,提出了一种将概率模型和神经网络结构的方法 使编码器产生的隐层表达满足正态分布,能够更好的生成图像模型
实现与Python实现
传统的自动编码器实验结果
模型结构与实现代码
传统的自动编码器分为编码器部分和解码器部分...,整体模型结构如图所示:
模型分为三个子模块,由上至下分别为输入层,多层编码器层和多层解码器层,编码器将输入维度为784(28 28)的mnint灰度值转化为一个维度为2的值.编码器将维度为2...卷积自编码器
模型结构与实现代码
卷积自编码器自动编码器分为编码器部分和解码器部分,整体模型结构如图所示:
python-keras代码实现关键代码如下:
def __init__(self...变分自编码器
模型结构与实现代码
变分自动编码器的结构最为复杂,并且在模型中引入了隐变量,和KL散度等概率论概念.对模型的实现造成了一定的影响....自动编码器分为编码器部分和解码器部分,整体模型结构如图所示:
上图中并没有展开编码器和解码器的结构,编码器(encoder) 与 解码器(decoder)的形式分别如下:
encoder: