上图中添加了方框中的特选部分和备注 自定义颜色 上面的图形是Plotly自带的颜色:涨是红色,跌是绿色,下图中将涨变成了蓝色 fig = go.Figure(data=[go.Ohlc( x=df...fig = px.bar( stock, # 数据 x=stock.index, # x轴 y="GOOG" # y轴 ) fig.show() ?...') fig = px.histogram( # 直方图 df, x="Date", y="AAPL.Open", histfunc="avg", # 直方图函数...title="时间轴的直方图实现") fig.update_traces(xbins_size="M1") # 按月显示 fig.update_xaxes( showgrid=False...fig = px.line(df, x='Date', # x轴 y='AAPL.High', # y轴 range_x
在开始前,我们需要使用 pip install cufflinks plotly 在 Python 环境中安装这两个包,然后在 jupyter notebook 中导入这两个包: 单变量分布:直方图和箱线图...直方图是绘制单变量分布的首选方式。...如果你已经习惯使用matplotlib,你所需要做的只是在你原有代码的基础上添加一个字母,即把 plot 改为 iplot,就可以得到一个更加好看的交互式图标!...我们在一行代码里完成了很多不同的事情: - 自动获得了格式友好的时间序列作为x轴 - 添加一个次坐标轴(第二y轴),因为上图中的两个变量的值范围不同。...如果要在图表中体现三个数值变量,我们还可以使用气泡图,如下图:横坐标、纵坐标、气泡的大小分别代表三个不同的变量——文章字数的对数、阅读数量、阅读比例。 ?
也可以通过 facet_col ="continent" 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...Plotly Express 有许多功能来处理这些任务。 使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图 ? 箱形图 ?...主题(Themes)允许你控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。你可以使用模板参数应用任何命名的主题或主题对象: ?...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让你直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框
加载数据和导入库 请加载本文中将要使用的数据。对数据进行了一些预处理。在有意义的地方进行推断。...2018年:人均GDP的国家数量直方图。毫不奇怪,大多数国家都是贫穷的!...bins:允许覆盖直方图的bin宽度。bins需要一个列表或类似列表的值序列(例如bins=np.arange(2,8,0.25)) xlim/ylim:允许覆盖轴的最大值和最小值的默认值。...看看如何在一个图表中为单个变量或多个变量生成分布。...,X轴为年。
我已经对数据进行了预处理。并对它的意义进行了探究和推断。...· bins:直方图的bin宽度。bin需要一个值的列表或类似列表序列(例如, bins=np.arange(2,8,0.25)) · xlim/ylim: 轴的最大和最小默认值。...直方图和核密度分布都是可视化特定变量关键特征的有效方法。下面来看看如何在一个图表中生成单个变量或多个变量分布。 ?...y轴代表生活阶梯,x轴代表年份。网格的列代表大洲,网格的行代表不同水平的人均GDP。...散点图 通过下列代码来运行plotly图表: fig = x.
也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...Plotly Express 有许多功能来处理这些任务。 使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: ? 箱形图: ?...主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。 您可以使用模板参数应用任何命名的主题或主题对象: ?...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框
也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰: ?...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: image.png 箱形图: image.png 小提琴图: image.png...主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框
这种复杂性让作者在StackOverflow上遭受了数小时的挫折去弄清楚如何格式化日期或添加第二个y轴。幸运的是,在探索了一些选项后,一个在易用性,文档和功能方面显著的赢家是Plotly库。...在本文中,我们将直接上手使用Plotly,学习如何在更短的时间内制作出更好的图表。...▲使用plotly+cufflinks制作的交互式直方图 对于那些习惯使用Matplotlib的人来说,我们所要做的就是添加一个字母(使用iplot而不是plot),我们就可以得到一个更好看的交互式图表...在这里,我们仅用一行代码做了很多不同的事情: 自动获取时间序列x轴 添加辅助y轴,因为我们的变量有不同的范围 将文章标题添加为悬停信息 我们还可以非常轻松地添加文本注释: tds_monthly_totals.iplot...我们可以使用log轴(指定为绘图布局)(参见Plotly文档-中的布局细节-https://plot.ly/python/reference/)以及数值变量来调整气泡,让图表更复杂一点: tds.iplot
联合分布图(散点图+直方图) 上方增加直方图,右方增加细条图 px.scatter(iris,x="sepal_width",y="sepal_length",color="species",...列中的值用于笛卡尔坐标中沿 X 轴的定位标记。图表类型为水平柱状图时,这些值用作参数histfunc的入参; y :指定列名。列中的值用于笛卡尔坐标中沿 Y 轴的定位标记。...使用size参数时,设置最大标记的大小; marginal_x:字符串,取值:rug(细条)、box(箱图)、violin(小提琴图)、histogram(直方图)。...如果为True,则 X 轴在笛卡尔坐标系中进行对数缩放; log_y:布尔值,默认为False。...如果为True,则 Y 轴在笛卡尔坐标系中进行对数缩放; range_x:2个数字元素组成的列表,用于设定笛卡尔坐标中 X 轴上的自动缩放,即边界的大小值; range_y:2个数字元素组成的列表,用于设定笛卡尔坐标中
这种复杂性让作者在StackOverflow上遭受了数小时的挫折去弄清楚如何格式化日期或添加第二个y轴。幸运的是,在探索了一些选项后,一个在易用性,文档和功能方面显著的赢家是Plotly库。...在本文中,我们将直接上手使用Plotly,学习如何在更短的时间内制作出更好的图表。...使用plotly+cufflinks制作的交互式直方图 对于那些习惯使用Matplotlib的人来说,我们所要做的就是添加一个字母(使用iplot而不是plot),我们就可以得到一个更好看的交互式图表!...在这里,我们仅用一行代码做了很多不同的事情: 自动获取时间序列x轴 添加辅助y轴,因为我们的变量有不同的范围 将文章标题添加为悬停信息 我们还可以非常轻松地添加文本注释: tds_monthly_totals.iplot...我们可以使用log轴(指定为绘图布局)(参见Plotly文档-中的布局细节-https://plot.ly/python/reference/)以及数值变量来调整气泡,让图表更复杂一点: tds.iplot
(x, y)# 添加标题和标签plt.title("简单折线图")plt.xlabel("X轴")plt.ylabel("Y轴")# 显示图形plt.show()输出:一个简单的折线图,显示了x与y的关系...='o')plt.title("定制样式的折线图")plt.xlabel("X轴")plt.ylabel("Y轴")plt.show()输出:这将绘制一个绿色的虚线折线图,并在每个数据点处加上圆形标记。...fig = px.box(df, x="category", y="value") plotly.express.histogram() 绘制直方图...如颜色、大小等) fig.update_traces(marker=dict(color='red', size=10)) fig.update_xaxes() / fig.update_yaxes...()更新X轴或Y轴的属性 fig.update_xaxes(showgrid=False) 总结在本文中,我们介绍了Python常用的绘图库
Plotly Plotly 是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。...使用Plotly可以画出很多媲美Tableau的高质量图: 图片.png plotly制图我尝试做了折线图、散点图和直方图,首先导入库: from plotly.graph_objs import...'lines', name = 'lines' ) data = [trace0,trace1,trace2] py.iplot(data) 图片.png 折线图 随机设置4个参数,一个x轴的数字和三个...y轴的随机数据,制作出三种不同类型的图。...直方图是我们比较常用的一种图形,plotly绘制直方图的方式跟我们在pandas里面设置的有点类似,他们非常直观的体现了不同月份两个生产力之间的差异。
Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板,用户只需调用简单的API函数,即可快速生成漂亮的互动图表,可满足90%以上的应用场景。...本文借助Plotly Express提供的几个样例库进行密度图、小提琴图、箱线图、地图、趋势图,还有用于实现数据预探索的各种关系图、直方图等基本图形的实现。...# 鸢尾花类型=1的sepal_width,sepal_length散点图,x轴为密度图,y轴为直方图 fig = px.scatter(df, x="sepal_width", y="sepal_length...散点图,x轴为箱线图,y轴为小提琴图 fig = px.scatter(df, x="sepal_width", y="sepal_length", marginal_x..."box", marginal_y="violin") fig.show() # 密度热力图,鸢尾花类型=1的sepal_width,sepal_length散点图,x轴为密度图,y轴为直方图 fig
上方增加直方图,右方增加细条图 px.scatter(iris,x="sepal_width",y="sepal_length",color="species", marginal_x...列中的值用于笛卡尔坐标中沿 X 轴的定位标记。图表类型为水平柱状图时,这些值用作参数histfunc的入参; y :指定列名。列中的值用于笛卡尔坐标中沿 Y 轴的定位标记。...使用size参数时,设置最大标记的大小; marginal_x:字符串,取值:rug(细条)、box(箱图)、violin(小提琴图)、histogram(直方图)。...如果为True,则 X 轴在笛卡尔坐标系中进行对数缩放; log_y:布尔值,默认为False。...如果为True,则 Y 轴在笛卡尔坐标系中进行对数缩放; range_x:2个数字元素组成的列表,用于设定笛卡尔坐标中 X 轴上的自动缩放,即边界的大小值; range_y:2个数字元素组成的列表,用于设定笛卡尔坐标中
数据分析是对数据进行排序、分类和总结以回答研究问题的过程。我们应该快速有效地完成数据分析,并得出脱颖而出的结论。 而不同可视化的数据绘图类型是实现以上目标的一个重要方面。...这些点通常按其 x 轴值排序。这些点用直线段连接。折线图用于可视化一段时间内数据的趋势。 以下是折线图中按年计算的加拿大预期寿命的说明。...以下是如何在情节中做到这一点: import plotly.express as px df = px.data.gapminder().query("country=='Canada'") fig =...它的每个折线图都向下阴影到 x 轴。它让每一组彼此堆叠。...双峰分布 在这个直方图中,有两组呈正态分布的直方图。它是在数据集中组合两个变量的结果。
Plotly Express 回归 这里我们将一起学习如何使用plotly图表来显示各种类型的回归模型,从简单的模型如线性回归,到其他机器学习模型如决策树和多项式回归。...重点学习plotly的各种功能,如使用不同参数对同一模型进行比较分析、Latex显示、3D表面图,以及使用plotly Express进行增强的预测误差分析。...实际点与预测点的比较图 这介绍了比较预测输出与实际输出的最简单方法,即以真实值为x轴,以预测值为y值,绘制二维散点图。从图中看,若理论最优拟合(黑色斜线)附近有大部分的散点则说明模型拟合效果很好。...单个函数调用来绘制每个图形 第一个图显示了如何在单个分割(使用facet分组)上可视化每个模型参数的分数。 每个大块代表不同数据分割下,不同网格参数的R方和。...y轴 fig_thresh.update_yaxes(scaleanchor="x", scaleratio=1) fig_thresh.update_xaxes(range=[0.2, 1], constrain
,color 参数用于根据类别对数据点进行着色。...='互动折线图', xaxis_title='X 轴', yaxis_title='Y 轴', hovermode='closest')# 显示图表fig.show()在这个示例中,我们使用...示例:交互式数据选择以下示例展示了如何在 Plotly Express 中启用数据选择功能:import plotly.express as pximport pandas as pd# 创建示例数据df...以下示例展示了如何在图表中添加注释和标记:import plotly.graph_objects as go# 创建示例数据x = [1, 2, 3, 4, 5]y = [10, 11, 12, 13,...=-40)# 更新布局fig.update_layout( title='添加注释和标记的折线图', xaxis_title='X 轴', yaxis_title='Y 轴',
它可以根据热力图或树状图的完成度或点的相关度对数据进行过滤和排序。...07 Plotly ? Plotly是一个数据可视化的在线平台,与Bokeh一样,Plotly的强项在于制作交互式视图,但它提供了一些在大多数库中没有的图表,如等高线图、树状图和3D图表。...可以在线绘制条形图、散点图、饼图、直方图等多种图形,可以画出很多媲美Tableau的高质量图。...声明意味着用户只需要提供数据列与编码通道之间的链接,例如,x轴、y轴、颜色等,其余的绘图细节它会自动处理。...在创建绘图后,用户可以在它的上面添加字段,以便对数据进行筛选和排序。
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~本文基于一份公开的数据讲解plotly的多种图形的绘制,包含:散点图分组散点图气泡图3D散点图线形图柱状图分组柱状图堆叠柱状图箱型图饼图甜甜圈图直方图核密度图热力图子图部分图预览...:1 plotly图形Plotly是一个用于创建交互式图表的Python库,它支持多种图表类型,如折线图、散点图、饼图、热力图等。...Plotly的特点如下:高度可定制:用户可以根据需要调整图表的各种属性,如颜色、字体、轴标签等,以创建符合需求的可视化效果。...集成其他库:可以与其他流行的Python数据处理和可视化库(如Pandas、NumPy、Matplotlib等)结合使用,方便数据处理和图形绘制。...df[df['gender']=='male']['math score'], # x-y轴数据 y = df[df['gender']=='male'
领取专属 10元无门槛券
手把手带您无忧上云