在Pyomo中使用多个键在字典中循环来定义优化问题可以通过以下步骤实现:
from pyomo.environ import ConcreteModel, Var, Objective, Constraint, SolverFactory
model = ConcreteModel()
keys = ['key1', 'key2', 'key3']
values = {'key1': [1, 2, 3], 'key2': [4, 5, 6], 'key3': [7, 8, 9]}
model.x = Var(keys, within=NonNegativeReals)
model.y = Var(keys, within=NonNegativeReals)
model.obj = Objective(expr=sum(model.x[key] + model.y[key] for key in keys))
model.con = ConstraintList()
for key in keys:
model.con.add(model.x[key] + model.y[key] >= values[key][0])
solver = SolverFactory('glpk')
solver.solve(model)
完整的代码示例如下:
from pyomo.environ import ConcreteModel, Var, Objective, Constraint, SolverFactory
model = ConcreteModel()
keys = ['key1', 'key2', 'key3']
values = {'key1': [1, 2, 3], 'key2': [4, 5, 6], 'key3': [7, 8, 9]}
model.x = Var(keys, within=NonNegativeReals)
model.y = Var(keys, within=NonNegativeReals)
model.obj = Objective(expr=sum(model.x[key] + model.y[key] for key in keys))
model.con = ConstraintList()
for key in keys:
model.con.add(model.x[key] + model.y[key] >= values[key][0])
solver = SolverFactory('glpk')
solver.solve(model)
这段代码中,我们使用了Pyomo库来定义一个具体模型对象,并在该模型中创建了变量、目标函数和约束。通过循环遍历字典中的键,我们可以根据不同的键来定义变量和约束的表达式。最后,我们使用GLPK求解器来求解优化问题。
在这个例子中,我们使用了GLPK求解器,你可以根据自己的需求选择其他求解器。此外,你还可以根据具体的优化问题进行适当的修改和扩展。
腾讯云相关产品和产品介绍链接地址:
领取专属 10元无门槛券
手把手带您无忧上云