图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(数据描述量)来描述整个图像,这组数据月简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰,图像识别技术的发展中,不断有新的描述图像特征提出,而图像不变矩就是其中一个。
图像边缘检测能够大幅减少数据量,在保留重要的结构属性的同时,剔除弱相关信息。 在深度学习出现之前,传统的Sobel滤波器,Canny检测器具有广泛的应用,但是这些检测器只考虑到局部的急剧变化,特别是颜色、亮度等的急剧变化,通过这些特征来找边缘。 这些特征很难模拟较为复杂的场景,如伯克利的分割数据集(Berkeley segmentation Dataset),仅通过亮度、颜色变化并不足以把边缘检测做好。2013年,开始有人使用数据驱动的方法来学习怎样联合颜色、亮度、梯度这些特征来做边缘检测。 为了更好地评测边缘检测算法,伯克利研究组建立了一个国际公认的评测集,叫做Berkeley Segmentation Benchmark。从图中的结果可以看出,即使可以学习颜色、亮度、梯度等low-level特征,但是在特殊场景下,仅凭这样的特征很难做到鲁棒的检测。比如上图的动物图像,我们需要用一些high-level 比如 object-level的信息才能够把中间的细节纹理去掉,使其更加符合人的认知过程(举个形象的例子,就好像画家在画这个物体的时候,更倾向于只画外面这些轮廓,而把里面的细节给忽略掉)。 .
今天我们将一起探究如何使用OpenCV和Python从图像中提取感兴趣区域(ROI)。
【OpenCV学堂】原创文章作者 贾志刚 推出 OpenCV Python系列视频教程,全套视频教程基于OpenCV Python语言API讲述,简单易学,内容翔实,满满干货!是入门计算机视觉与人工智能的最佳选择。整套教材分为三部分,由浅入深、循序渐进,课程主讲老师-贾志刚
取值 含义 cv2.CHAIN_APPROX_NONE 存储了所有的轮廓点。也就是说,等高线的任意2个后续点(x1,y1)和(x2,y2)将是水平、垂直或对角线邻居,即 max (abs (x1-x2),abs (y2-y1)) = 1。 cv2.CHAIN_APPROX_SIMPLE 压缩水平、垂直和对角线段,只留下它们的端点。例如,一个直立的矩形轮廓用 4 个点进行编码。 cv2.CHAIN_APPROX_TC89_L1 运用了 Teh-Chin 连锁近似演算法的一种 cv2.CHAIN_APPROX_TC89_KCOS 运用了 Teh-Chin 连锁近似演算法的一种
本篇文章目的将为你详细罗列 Python OpenCV 的学习路线与重要知识点。核心分成 24 个小节点,全部掌握,OpenCV 入门阶段就顺利通过了。
拥有思维导图或流程将引导我们朝着探索和寻找实现目标的正确道路的方向发展。如果要给我一张图片,我们如何找到车牌并提取文字?
识别道路上的车道是所有司机的共同任务,以确保车辆在驾驶时处于车道限制之内,并减少因越过车道而与其他车辆发生碰撞的机会。
您已经读了这本书,因此您可能已经对 OpenCV 是什么有了个概念。 也许您听说过似乎来自科幻小说的功能,例如训练人工智能模型以识别通过相机看到的任何东西。 如果这是您的兴趣,您将不会感到失望! OpenCV 代表开源计算机视觉。 它是一个免费的计算机视觉库,可让您处理图像和视频以完成各种任务,从显示网络摄像头中的帧到教机器人识别现实中的物体。
在中学的时候地理课上,老师教过我们如何根据地图上面测量的距离来计算实际空间上距离。
这篇文章主要介绍了python 基于opencv 绘制图像轮廓的示例,帮助大家更好的利用python的opencv库处理图像,感兴趣的朋友可以了解下
OpenCV是计算机视觉中经典的专用库,然而其中文版官方教程久久不来。近日,一款最新OpenCV4.1 版本的完整中文版官方教程出炉,读者朋友可以更好的学习了解OpenCV相关细节。教程来自objectdetection.cn。
今天小编来给大家介绍3个干货满满的计算机视觉方向的Python实战项目,主要用到的库有
在VC++中使用OpenCV进行形状和轮廓检测,轮廓是形状分析以及物体检测和识别的有用工具。如下面的图像中Shapes.png中有三角形、矩形、正方形、圆形等,我们如何去区分不同的形状,并且根据轮廓进行检测呢?
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它包含了数百种计算机视觉算法,包括图像处理、视频分析、物体检测、面部识别等。结合Python语言的强大功能,OpenCV可以用于快速开发复杂的图像处理和计算机视觉应用。本文将介绍如何使用Python和OpenCV进行图像处理,并提供一个简单的实践示例。
图像边缘检测是计算机视觉和图像处理中的重要任务,它用于检测图像中物体和区域之间的边缘和轮廓。在Python中,有多种方法可以进行图像边缘检测,本文将介绍一种常用的方法:Canny边缘检测算法。
在图像中测量物体的大小与计算从相机到物体之间的距离是相似的,在这两种情况下,我们需要定义一个比值,它测量每个给定指标的像素个数。
运动检测是指检测物体相对于周围环境的位置是否发生了变化。接下来,让我们一起使用Python实现一个运动检测器应用程序吧!
OpenCV3 和 Qt5 计算机视觉 零、前言 一、OpenCV 和 Qt 简介 二、创建我们的第一个 Qt 和 OpenCV 项目 三、创建一个全面的 Qt + OpenCV 项目 四、Mat和QImage 五、图形视图框架 六、OpenCV 中的图像处理 七、特征和描述符 八、多线程 九、视频分析 十、调试与测试 十一、链接与部署 十二、Qt Quick 应用 精通 Python OpenCV4 零、前言 第 1 部分:OpenCV 4 和 Python 简介 一、设置 OpenCV 二、Ope
OpenCV4.0发布以来,其依靠良好的接口代码、系统级别的优化、更加通用易学的函数调用,集成OpenVINO与tensorflow、caffe等模型加速推断、实现了从传统的图像处理到基于深度学习的视觉处理路线图的完整拓展。OpenCV4 毫无疑问是一个OpenCV发展历史的一个重要里程碑之作。官方的宣传口号是 OpenCV4 is more than OpenCV 充分说明OpenCV4 是整合深度学习的新一代计算机视觉开发框架!
新增了五个教程: OpenCV3 和 Qt5 计算机视觉 零、前言 一、OpenCV 和 Qt 简介 二、创建我们的第一个 Qt 和 OpenCV 项目 三、创建一个全面的 Qt + OpenCV 项目 四、Mat和QImage 五、图形视图框架 六、OpenCV 中的图像处理 七、特征和描述符 八、多线程 九、视频分析 十、调试与测试 十一、链接与部署 十二、Qt Quick 应用 精通 Python OpenCV4 零、前言 第 1 部分:OpenCV 4 和 Python 简介 一、设置 Ope
在高等数学中我们了解到梯度不是一个实数,他是一个向量,是有方向有大小的。现在以一个二元函数来举例,假设一二元函数f(x,y),在某点的梯度有:
很多人家的经验,我发现都千篇一律,功能函数没解析,参数不讲解,就一个代码,所以在此将搜集的解析和案例拿出来汇总!!!
车牌识别技术 是智能交通系统中的重要组成部分,它可以对车辆的行驶轨迹进行跟踪和记录,为交通管理提供重要的数据支持。
2015年我出版了个人第一本关于图像处理方面的书籍《Java图像处理-编程技巧与应用实践》,这本书主要是从理论与编码上面详细阐述了图像处理基础算法以及它们在编码实现上的技巧。一转眼已经三年过去了,在这三年的时光里我无时无刻都在关注图像处理与计算机视觉技术发展与未来,同时渐渐萌发了再写一本图像处理相关技术书籍的念头,因为《Java图像处理-编程技巧与应用实践》一书主要不是针对工程应用场景,读者在学完之后很难直接上手开始做项目,所以把第二本书定位为工程实战书籍类型,可以帮助大家解决工程与项目实际技术问题。OpenCV是英特尔开源出来的计算机视觉框架,有着十分强大的图像与视频分析处理算法库。借助OpenCV框架,Android程序员可以在不关心底层数学原理的情况下,解决人脸检测、OCR识别、AR应用开发,图像与视频分析处理,文本处理等Androd开发者经常遇到问题,考虑这些真实需求,本着从易到难的原则,列出了提纲,得到机械工业出版社 杨绣国编辑 肯定与大力支持,于是才有《OpenCV Android开发实战》一书的写作与出版。
好久没写东西了,由于楼主换了个城市工作,发现工作量蹭蹭的上来了,周末又喜欢出去觅食,导致没学习很久,今天准备水一篇来翻译一下如何理解HOG(Histogram Of Gradient, 方向梯度直方图)。本文主要翻译了这篇文章,也是我非常喜欢的博主之一(奈何他开的课程错过了T-T~~)。 特征描述子 特征描述子就是图像的表示,抽取了有用的信息丢掉了不相关的信息。通常特征描述子会把一个w*h*3(宽*高*3,3个channel)的图像转换成一个长度为n的向量/矩阵。比如一副64*128*3的图像,经过转换后输
本文主要翻译了Histogram of Oriented Gradients一文。 特征描述子(Feature Descriptor) 特征描述子就是图像的表示,抽取了有用的信息,丢掉了不相关的信息。通常特征描述子会把一个w*h*3(宽高3,3个channel)的图像转换成一个长度为n的向量/矩阵。比如一副64*128*3的图像,经过转换后输出的图像向量长度可以是3780。 什么样子的特征是有用的呢?假设我们想要预测一张图片里面衣服上面的扣子,扣子通常是圆的,而且上面有几个洞,那你就可以用边缘检测(ed
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
本文全面介绍了Python中OpenCV库(cv2)的安装和基础使用方法。文章详细讲解了如何通过Python进行图像处理的各种技术,包括图像读取、处理和显示等功能。适用于所有水平的开发者,从初学者到高级用户。关键词:Python OpenCV安装、cv2图像处理、opencv-python教程、图像识别、计算机视觉入门,确保读者能通过百度等搜索引擎快速找到本文。
轮廓特征和轮廓匹配是图像处理中用于描述和比较轮廓的技术。通过提取轮廓的形状、面积、周长等特征,并进行比较和匹配,我们可以实现目标识别、形状分析等应用。在本文中,我们将以轮廓特征和轮廓匹配为中心,为你介绍使用 OpenCV 进行轮廓处理的基本步骤和实例。
在本书的第二部分中,您将更深入地了解 OpenCV 库。 更具体地说,您将看到计算机视觉项目中所需的大多数常见图像处理技术。 此外,您还将看到如何创建和理解直方图,直方图是用于更好地理解图像内容的强大工具。 此外,您将在计算机视觉应用中看到所需的主要阈值处理技术,这是图像分割的关键部分。 此外,您还将看到如何处理轮廓,轮廓用于形状分析以及对象检测和识别。 最后,您将学习如何构建第一个增强现实应用。
哈喽,大家好,我们今天了解一下OpenCV中的边缘检测功能实现。在一些案例中,我们需要对物体进行边缘检测,而且是越精准越好。那么,OpenCV提供了哪些边缘检测的方法呢?
由于工作需要,最近在研究关于如何通过程序识别答题卡的客观题的答案,之前虽然接触过python,但对于计算机视觉这一块却完全是一个陌生的领域,经过各种调研,发现网上大多数的例子都是采用的OpenCV这个开源库来做的,OpenCV是计算机视觉领域的处理的一个非常优秀的开源库,原生由C++编写,也提供了各个主流编程语言的接口支持,这里选择python完全是因为python在计算机科学领域有着压倒性的优势和生态系统,所以使用它毫无疑问,最快上手的方式莫过于直接阅读网上已有的例子或者轮子了,通过阅读源码以问题驱动的方
虽然计算机视觉领域目前基本是以深度学习算法为主,但实际上很多时候对图片的很多处理方法,并不需要采用深度学习的网络模型,采用目前成熟的图像处理库即可实现,比如 OpenCV 和 PIL ,对图片进行简单的调整大小、裁剪、旋转,或者是对图片的模糊操作。
本文来自光头哥哥的博客【Ordering coordinates clockwise with Python and OpenCV】,仅做学习分享。
轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。
一直关注我的朋友应该知道前段时间使用OpenCV做了数字华容道的游戏及AI自动解题,相关文章《整活!我是如何用OpenCV做了数字华容道游戏!(附源码)》《趣玩算法--OpenCV华容道AI自动解题》,一直也想在现在的基础上再加些东西,就考虑到使用图像读取了棋盘,生成对应的棋局再自动AI解题。
本文来自光头哥哥的博客【Measuring distance between objects in an image with OpenCV】,仅做学习分享。
在数字图像处理领域,OpenCV(开源计算机视觉库)是一个不可或缺的工具。它包含了一系列强大的算法和函数,使得开发者可以轻松地处理图像和视频数据。本文将带你走进OpenCV的世界,了解其基本概念和常见应用。
由于噪声和光照的影响,物体的轮廓会出现不规则的形状,根据不规则的轮廓形状不利于对图像内容进行分析,此时需要将物体的轮廓拟合成规则的几何形状,根据需求可以将图像轮廓拟合成矩形、多边形等。本小节将介绍OpenCV 4中提供的轮廓外接多边形函数,实现图像中轮廓的形状拟合。
之前吃串串火锅,老板数竹签不是称重就是用手慢慢数,但是称重似乎总是得不到正确的竹签数目,而且容易暗箱操作;而慢慢数总是要等待比较长的时间,感觉两者对处理数竹签的问题都存在比较大的缺陷。因此,一款可以数竹签的应用因此产生,一下就弥补了两种处理方式所存在的缺陷。
在计算机视觉和图像处理领域,OpenCV是一个强大而广泛使用的开源库,提供了丰富的图像处理和计算机视觉算法。本文将介绍如何使用OpenCV来检测并定位图像中的黑色区域。
概述 来源:pyimagesearch 编译:AI算法与图像处理 我想应该很多人都玩过腾讯的这款游戏《大家来找茬》,想当年不知道多少人用鼠标对着美女图一顿输出,就是找不到哪里不一样。 今天我们要用到图像技术可以应用到这个上面。
学习计算机视觉最重要的能力应该就是编程了,为了帮助小伙伴尽快入门计算机视觉,小白准备了【OpenCV入门】系列。新的一年文章的内容进行了很大的完善,主要是借鉴了更多大神的文章,希望让小伙伴更加容易理解。如果小伙伴觉得有帮助,请点击一下文末的“好看”鼓励一下小白。
本期教程我们将和小伙伴们一起研究如何使用计算机视觉和图像处理技术来检测汽车在行驶中时汽车是否在改变车道!大家一定听说过使用OpenCV 的haar级联文件可以检测到面部、眼睛等,但是如果目标是汽车,公共汽车呢?
领取专属 10元无门槛券
手把手带您无忧上云