如果对其进行转置,执行arr2 = arr1.transpose((1,0,2))
得到:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7]...0], 4[2])
虽然看起来 变换前后的shape都是 2,2,4 , 但是问题来了,transpose是转置
shape按照(1,0,2)的顺序重新设置了, array里的所有元素 也要按照这个规则重新组成新矩阵...另外一个知识点:
对于一维的shape,转置是不起作用的,举例:
x=linspace(0,4,5)
#array([0.,1.,2.,3.,4.])
y=transpose(x) # 会转置失败。...如果想正确使用的话:
x.shape=(5,1)
y=transpose(x) #就可以了
以上这篇对python 矩阵转置transpose的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考...您可能感兴趣的文章:
Numpy中转置transpose、T和swapaxes的实例讲解
Python实现矩阵转置的方法分析
numpy.transpose对三维数组的转置方法
numpy中的高维数组转置实例