首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在R中创建滑动窗口,将数据划分为测试和训练样本,以测试预测的准确性?

在R中,可以使用滑动窗口方法将数据划分为测试和训练样本,以测试预测的准确性。滑动窗口方法是一种交叉验证技术,它通过滑动一个固定大小的窗口来选择训练和测试数据。

以下是在R中创建滑动窗口的步骤:

  1. 首先,将数据按照时间顺序排序,确保数据的时间顺序是正确的。
  2. 确定滑动窗口的大小,即每个窗口中包含的数据点数量。这个大小可以根据具体问题和数据集的大小来确定。
  3. 使用createDataPartition函数将数据集划分为训练和测试集。这个函数可以根据指定的比例将数据集划分为训练和测试集,例如,可以将数据集划分为70%的训练集和30%的测试集。
  4. 使用rollingOrigin函数创建滑动窗口对象。这个函数接受两个参数,第一个参数是数据集,第二个参数是滑动窗口的大小。它将返回一个滑动窗口对象,可以用于后续的训练和测试。
  5. 使用rollingForecast函数进行滑动窗口的训练和测试。这个函数接受三个参数,第一个参数是模型,第二个参数是滑动窗口对象,第三个参数是一个函数,用于在每个窗口中进行训练和测试。在这个函数中,可以使用训练数据来训练模型,并使用测试数据来进行预测和评估。

以下是一个示例代码:

代码语言:R
复制
library(caret)

# 读取数据
data <- read.csv("data.csv")

# 按时间排序数据
data <- data[order(data$time), ]

# 确定滑动窗口大小
window_size <- 100

# 划分训练和测试集
train_index <- createDataPartition(data$target, p = 0.7, list = FALSE)
train_data <- data[train_index, ]
test_data <- data[-train_index, ]

# 创建滑动窗口对象
window <- rollingOrigin(train_data, window_size)

# 定义训练和测试函数
train_test <- function(window) {
  train <- train_data[window$trainIndex, ]
  test <- train_data[window$testIndex, ]
  
  # 在每个窗口中进行训练和测试
  # 这里可以使用任何机器学习算法进行训练和测试
  model <- train(target ~ ., data = train, method = "lm")
  predictions <- predict(model, newdata = test)
  
  # 计算预测准确性
  accuracy <- confusionMatrix(predictions, test$target)$overall["Accuracy"]
  
  return(accuracy)
}

# 在滑动窗口上进行训练和测试
accuracies <- sapply(window, train_test)

# 打印每个窗口的准确性
print(accuracies)

在这个示例中,我们首先读取数据,并按照时间排序。然后,我们使用createDataPartition函数将数据集划分为训练和测试集。接下来,我们使用rollingOrigin函数创建滑动窗口对象。最后,我们定义了一个训练和测试函数,并在每个窗口上进行训练和测试。最终,我们得到了每个窗口的预测准确性。

对于滑动窗口方法的优势,它可以更好地模拟实际应用中的情况,因为它考虑了时间顺序。它可以帮助我们评估模型在不同时间段的预测能力,并检测模型在时间上的稳定性。

滑动窗口方法在时间序列分析、金融预测、天气预测等领域有广泛的应用。

腾讯云相关产品和产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 用于 BCI 信号分类的深度特征的 Stockwell 变换和半监督特征选择

    在过去的几年里,运动图像 (MI) 脑电图 (EEG) 信号的处理已被吸引到开发脑机接口 (BCI) 应用程序中,因为这些信号的特征提取和分类由于其固有的复杂性和倾向于人为它们的属性。BCI 系统可以提供大脑和外围设备之间的直接交互路径/通道,因此基于 MI EEG 的 BCI 系统对于控制患有运动障碍的患者的外部设备似乎至关重要。目前的研究提出了一种基于三阶段特征提取和机器学习算法的半监督模型,用于 MI EEG 信号分类,以通过更少的深度特征来提高分类精度,以区分左右手 MI 任务。在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、k近邻、决策树、随机森林,以及它们的融合比较。SDA 和提到的分类器的超参数通过贝叶斯优化进行优化,以最大限度地提高准确性。所提出的模型使用 BCI 竞赛 II 数据集 III 和 BCI 竞赛 IV 数据集 2b 进行验证。所提出方法的性能指标表明其对 MI EEG 信号进行分类的效率。

    02

    【知识】新手必看的十种机器学习算法

    机器学习领域有一条“没有免费的午餐”定理。简单解释下的话,它是说没有任何一种算法能够适用于所有问题,特别是在监督学习中。 例如,你不能说神经网络就一定比决策树好,反之亦然。要判断算法优劣,数据集的大小和结构等众多因素都至关重要。所以,你应该针对你的问题尝试不同的算法。然后使用保留的测试集对性能进行评估,选出较好的算法。 当然,算法必须适合于你的问题。就比如说,如果你想清扫你的房子,你需要吸尘器,扫帚,拖把。而不是拿起铲子去开始挖地。 大的原则 不过,对于预测建模来说,有一条通用的原则适用于所有监督学习算法。

    06

    基于CNN目标检测方法(RCNN,Fast-RCNN,Faster-RCNN,Mask-RCNN,YOLO,SSD)行人检测

    对于一张图片,R-CNN基于selective search方法大约生成2000个候选区域,然后每个候选区域被resize成固定大小(227×227)并送入一个CNN模型中,使用AlexNet来提取图像特征,最后得到一个4096维的特征向量。然后这个特征向量被送入一个多类别SVM分类器中,预测出候选区域中所含物体的属于每个类的概率值。每个类别训练一个SVM分类器,从特征向量中推断其属于该类别的概率大小。为了提升定位准确性,R-CNN最后又训练了一个边界框回归模型。训练样本为(P,G),其中P=(Px,Py,Pw,Ph)为候选区域,而G=(Gx,Gy,Gw,Gh)为真实框的位置和大小。G的选择是与P的IoU最大的真实框,回归器的目标值定义为:

    01

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    现有的深度卷积神经网络(CNNs)需要一个固定大小的输入图像(如224×224)。这一要求是“人为的”,可能会降低对任意大小/尺度的图像或子图像的识别精度。在这项工作中,我们为网络配备了另一种池化策略,“空间金字塔池”,以消除上述要求。这种新的网络结构称为SPP-net,可以生成固定长度的表示,而不受图像大小/比例的影响。金字塔池对物体变形也有很强的鲁棒性。基于这些优点,SPP-net一般应改进所有基于cnn的图像分类方法。在ImageNet 2012数据集中,我们证明了SPP-net提高了各种CNN架构的准确性,尽管它们的设计不同。在Pascal VOC 2007和Caltech101数据集中,SPP-net实现了最先进的分类结果使用单一的全图像表示和没有微调。在目标检测中,spp网络的能力也很重要。利用SPP-net算法,只对整个图像进行一次特征映射计算,然后将特征集合到任意区域(子图像),生成固定长度的表示形式,用于训练检测器。该方法避免了卷积特征的重复计算。在处理测试图像时,我们的方法比R-CNN方法快24-102×,而在Pascal VOC 2007上达到了更好或相近的精度。在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC)中,我们的方法在所有38个团队中目标检测排名第二,图像分类排名第三。本文还介绍了本次比赛的改进情况。

    02

    从清醒到睡眠的动态功能连接

    近年来,fMRI对时间分辨连通性的研究发展迅速。研究连接性随时间变化的最广泛使用的技术是滑动窗口方法。对于短窗与长窗的效用,固定窗与自适应窗的使用,以及在清醒状态下观察到的静息状态动态是否主要是由于睡眠状态和受试者头部运动的变化,一直存在一些争论。在这项工作中,我们使用了一个基于独立成分分析(ICA)的流程,将其应用于并发的清醒和不同睡眠阶段收集的脑电图/功能磁共振成像数据,并显示:1)从静息态时间过程的滑动窗相关的聚类得到的连接状态可以很好的分类从脑电图数据获得的睡眠状态,2)使用较短的滑动窗口代替非重叠窗口提高了捕获转变动力学的能力,即使在30s的窗长,3)运动似乎主要与一种状态相关,而不是分散在所有状态,4)固定的锥形滑动窗口方法优于自适应动态条件相关方法,5)与之前的EEG/fMRI工作一致,我们在清醒状态下识别多种状态的证据,这些证据能够被高度准确地分类。仅清醒状态的分类表明,除了睡眠状态或运动外,fMRI数据中连通性的时变变化也存在。结果也告知了有利的技术选择,和觉醒内不同集群的识别建议这一方向需要进一步研究。

    00

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet和Faster R-CNN等技术的进步,降低了检测网络的运行时间,但是暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的目标边界和目标得分。对RPN进行端到端训练,生成高质量的区域建议,Faster R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Faster R-CNN合并成一个单独的网络——使用最近流行的具有“Attention”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号,我们的检测系统在GPU上帧率为5帧(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个proposal。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。

    02

    U-Net: Convolutional Networks for Biomedical Image Segmentation

    人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,它依赖于数据扩充的强大使用,以更有效地使用可用的带注释的样本。该体系结构由捕获上下文的收缩路径和支持精确定位的对称扩展路径组成。我们证明这样的网络可以从非常少的图像端到端的训练,并且在ISBI挑战中在电子显微镜栈中神经结构的分割上胜过先前的最佳方法(滑动窗口卷积网络)。我们使用相同的网络训练透射光学显微镜图像(相位对比和DIC),在2015年ISBI细胞跟踪挑战赛中,我们在这些类别中获得了巨大的优势。此外,网络速度很快。在最近的GPU上,512x512图像的分割需要不到一秒的时间。

    03
    领券