在使用数据库的时候,需要将查询出来的一列按照逗号合并成一行。...原表名字为 TABLE ,表中的部分原始数据为: +---------+------------------------+ | BASIC | NAME | +-------...-+ | 计算机病毒事件,蠕虫事件,特洛伊木马事件 | +---------------------------------------------------------+ 但是在 spark...中没有 GROUP_CONCAT 命令,查找后发现命令 concat_ws : ResultDF.createOrReplaceTempView("BIGDATA") val dataDF=spark.sql...| +----------+------------------------------------------------+ 也可以用另一个方法: import org.apache.spark.sql.functions
如果您想知道如何在表中查找重复值,那么您可以在 SQL 中使用 GROUP BY 和 HAVING 子句。 使用 group by 您可以创建组,如果您的组有超过 1 个元素,则意味着它是重复的。...例如,您需要编写一个 SQL 查询来查找名为 Person 的表中的所有重复电子邮件。 这是一个流行的 SQL Query 面试问题以及 Leetcode 问题。...您需要编写一个查询来查找所有重复值。...+----+---------+ 例如,您的查询应返回上表的以下内容: +---------+ | Email | +---------+ | a@b.com | +---------+ 用于查找列中重复值的...这是查找重复电子邮件的 SQL 查询: SELECT Email FROM Person GROUP BY Email HAVING COUNT(Email) > 1 使用self-join在列中查找重复值
1.文档编写目的 为什么CDH甚至最新的CDP中对于Spark SQL CLI或者JDBC/ODBC没有提供基于Spark Thrift Server的支持,参考Fayson之前的文章《0827-7.1.4...-如何在CDP中使用Spark SQL CLI》,在CDP中,Cloudera给出了新的解决方案Livy Thrift Server,它是对Spark Thrift Server的增强,支持JDBC/Thrift...通过Hive Warehouse Connector(HWC),支持Spark SQL访问Hive3的内表,同时然Spark SQL支持基于Ranger的细粒度授权。...本文主要介绍如何在CDP中通过Livy Thrift Server来提交Spark SQL作业。...6.从CM进入Livy服务,在配置中搜索thrift,勾选Enable Livy Thrift Server选项。 ?
例如我们有一个值是123456789,那么我们怎么只显示4567呢? 示例 SELECT ... ... ,convert(varchar, table1....注意,他和程序中的index不一样,开始第一个字符就是1,而不是0。
通过JDBC或者ODBC来连接 二、Spark SQL编程 1、SparkSession新API 在老的版本中,SparkSQL提供两种SQL查询起始点: 一个叫SQLContext,用于Spark自己提供的...在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式: 通过Spark的数据源进行创建; val spark: SparkSession...(如文件存在则追加) df.write.mode("append").json("output02") // 追加到文件(如文件存在则忽略) df.write.mode("ignore")....json("output02") // 追加到文件(如文件存在则覆盖) df.write.mode("overwrite").json("output02") // 追加到文件(如文件存在则报错...spark.sql("create table user(id int, name string)") 查看数据库 spark.sql("show tables").show 向表中插入数据 spark.sql
下面是关于如何在 PySpark 中写入和读取 Parquet 文件的简单说明,我将在后面的部分中详细解释。...(data,columns) 在上面的示例中,它创建了一个 DataFrame,其中包含 firstname、middlename、lastname、dob、gender、salary 列。...parDF=spark.read.parquet("/PyDataStudio/output/people.parquet") 追加或覆盖现有 Parquet 文件 使用 append 追加保存模式,...可以将数据框追加到现有的 Parquet 文件中。...为了执行 sql 查询,我们不从 DataFrame 中创建,而是直接在 parquet 文件上创建一个临时视图或表。
SQL 一种使用 Spark SQL 的方式是使用 SQL。Spark SQL 也支持从 Hive 中读取数据,如何配置将会在下文中介绍。...如果你不希望自动推断分区列的类型,将 spark.sql.sources.partitionColumnTypeInference.enabled 设置为 false 即可,该值默认为 true。...如果用户即只想访问 path/to/table/gender=male 下的数据,又希望 gender 能成为分区列,可以使用 basePath 选项,如将 basePath 设置为 path/to/table...Spark SQL会只会缓存需要的列并且会进行压缩以减小内存消耗和 GC 压力。可以调用 spark.uncacheTable("tableName") 将表中内存中移除。...row,更大的值有助于提升内存使用率和压缩率,但要注意避免 OOMs 其他配置项 调整以下选项也能改善查询性能,由于一些优化可能会在以后的版本中自动化,所以以下选项可能会在以后被弃用 选项名 默认值
7) converters={'a': fun, 'b': fun}:对a和b两列做如上fun函数的处理。...1) sep=',':输出的数据以逗号分隔; 2) columns=['a','b','c']:制定输出哪些列; 3) na_rep='':缺失值用什么内容填充; 4) header=True:是导出表头...,代码会自动新建 file_handle.write(url) 将数据写入到txt文件中,a为追加模式,w为覆盖写入。...("spark.executor.memory", "500M") sc = spark.sparkContext sqlDF = spark.sql("SELECT * FROM people") try...,即write函数,可以导出为csv、text和导出到hive库中,可以添加format格式和追加模式:append 为追加;overwrite为覆盖。
数据跳过对于优化查询性能至关重要,通过启用包含单个数据文件的列级统计信息(如最小值、最大值、空值数等)的列统计索引,对于某些查询允许对不包含值的文件进行快速裁剪,而仅仅返回命中的文件,当数据按列全局排序时...使用空间填充曲线(如 Z-order、Hilbert 等)允许基于包含多列的排序键有效地对表数据进行排序,同时保留非常重要的属性:在多列上使用空间填充曲线对行进行排序列键也将在其内部保留每个单独列的排序...2.3 Spark SQL改进 0.10.0中我们对 spark-sql 进行了更多改进,例如添加了对非主键的 MERGE INTO 支持,并新支持了 SHOW PARTITIONS 和 DROP PARTITIONS...5.3 Spark-SQL主键要求 Hudi中的Spark SQL需要在sql语句中通过tblproperites或options指定primaryKey。...Spark SQL 如Create Table语法详情参考Create-table-datasource[14]。
在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?...与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值,如: testDF.foreach{ line => val...DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如: dataDF.createOrReplaceTempView...("tmp") spark.sql("select ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)...{ line=> println(line.col1) println(line.col2) } 可以看出,Dataset在需要访问列中的某个字段时是非常方便的
例如,Parquet和ORC等柱状格式使从列的子集中提取值变得更加容易。 基于行的存储格式(如Avro)可有效地序列化和存储提供存储优势的数据。然而,这些优点通常以灵活性为代价。...默认值为false,如果数据文件首行是列名称,设置为true 3)、是否自动推断每个列的数据类型:inferSchema 默认值为false,可以设置为true 官方提供案例: 当读取CSV/...import org.apache.spark.SparkContext import org.apache.spark.sql.types._ import org.apache.spark.sql...() } } parquet 数据 SparkSQL模块中默认读取数据文件格式就是parquet列式存储数据,通过参数【spark.sql.sources.default...单分区模式 方式二:多分区模式,可以设置列的名称,作为分区字段及列的值范围和分区数目 方式三:高度自由分区模式,通过设置条件语句设置分区数据及各个分区数据范围 当加载读取RDBMS表的数据量不大时
SQL操作的时候可以查询除授权表default.t1和default.test.name,这里依然可以查询test表的所有列。...Sentry只为fayson授予default.test.name和t1表的所有权限,而其他表则没有权限,对于只授权列权限的表,通过Spark-sql客户查询也会有权限问题。...1.在 Spark ThriftServer的启动命令中增加Hive的参数 ....执行SQL操作 查询授权的t1表 ? 查询只授权test.name列的表 ? ? 查看授权以外的表p1_text ?...kinit的用户,否则获取到的是ThriftServer的启动用户(即启动参数中的--principal的值)。
PySpark StructType 和 StructField 类用于以编程方式指定 DataFrame 的schema并创建复杂的列,如嵌套结构、数组和映射列。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...在下面的示例列中,“name” 数据类型是嵌套的 StructType。...在下面的示例中,列hobbies定义为 ArrayType(StringType) ,列properties定义为 MapType(StringType, StringType),表示键和值都为字符串。...如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点
Socket 数据源 从Socket中读取UTF8文本数据。...Bedug使用,三种输出模式OutputMode(Append、Update、Complete)都支持,两个参数可设置: 1.numRows,打印多少条数据,默认为20条; 2.truncate,如果某列值字符串太长是否截取...import org.apache.spark.sql.streaming....import org.apache.spark.sql.streaming....import org.apache.spark.sql.streaming.
通过Spark SQL,可以针对不同格式的数据执行ETL操作(如JSON,Parquet,数据库)然后完成特定的查询操作。...在这一文章系列的第二篇中,我们将讨论Spark SQL库,如何使用Spark SQL库对存储在批处理文件、JSON数据集或Hive表中的数据执行SQL查询。...JDBC数据源 Spark SQL库的其他功能还包括数据源,如JDBC数据源。 JDBC数据源可用于通过JDBC API读取关系型数据库中的数据。...Spark SQL示例应用 在上一篇文章中,我们学习了如何在本地环境中安装Spark框架,如何启动Spark框架并用Spark Scala Shell与其交互。...Spark SQL是一个功能强大的库,组织中的非技术团队成员,如业务分析师和数据分析师,都可以用Spark SQL执行数据分析。
在 PySpark 中,可以使用SparkSession来执行 SQL 查询。...以下是一个示例代码,展示了如何在 PySpark 中进行简单的 SQL 查询:from pyspark.sql import SparkSession# 创建 SparkSessionspark = SparkSession.builder.appName...= spark.sql("SELECT * FROM table_name WHERE column_name > 100")# 显示查询结果result.show()# 停止 SparkSessionspark.stop...注册临时视图:使用 df.createOrReplaceTempView 方法将 DataFrame 注册为临时视图,这样就可以在 SQL 查询中引用这个视图。...执行 SQL 查询:使用 spark.sql 方法执行 SQL 查询。在这个示例中,查询 table_name 视图中 column_name 列值大于 100 的所有记录。
它指的是在元数据中都记录这数据文件中的每一列的最小值和最大值,通过查询中列上的谓词来决定当前的数据文件是否可能包含满足谓词的任何records,是否可以跳过读取当前数据文件。...将多列转换为一个Z-index列,按照其进行排序,根据Z-Order值相近的数据会分布到同一个文件中的特性,从各个维度的值分布来说,从数据整体来看也会呈现近似单调的分布。...Spark使用的是开源组件antlr4将输入SQL解析为AST树。它的解析语法在DeltaSQLBase.g4文件中。...其实这个涉及到了SparkSQL的执行优化过程,SQL在执行前,通常需要先进行RBO优化,CBO等优化过程,这些优化的实现通常以Rule的形式进行注册封装,优化后才转换为RDD再执行Spark任务。...但是这里的rangeId需要通过专家经验的配置,其次其解决数据倾斜时在z-value数组中随机追加噪音字节。 根据z-value进行range重分区。数据会shuffle到多个partition中。
在数据帧中,数据以表格形式在行和列中对齐。它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。...大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...“城市”列的列值作为列表传递。
在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...读取数据并创建 DataFrame:使用 spark.read.csv 方法读取 CSV 文件,并将其转换为 DataFrame。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...停止 SparkSession:使用 spark.stop() 方法停止 SparkSession,释放资源。
由于上面的限制和问题, Spark SQL 内置的数据源实现(如 Parquet,JSON等)不使用这个公共 DataSource API。 相反,他们使用内部/非公共的接口。...Spark 仍然可以追加和读取那些不同的 来自数据源预定义或推断 schema 的数据。并不是所有的数据源都支持 Schema 的演进。...所有的数据源优化,如列剪裁,谓词下推,列式读取等。应该定义为单独的 Java 接口,用户可以选择他们想要实现的任何优化。...但是,这 2 个概念在 Spark 中已经广泛使用了,例如 DataFrameWriter.partitionBy 和 像 ADD PARTITION 的DDL语法。...例如,当用户发出命令spark.conf.set("spark.datasource.json.samplingRatio","0.5"),samplingRatio = 0.5 会在当前会话中随后的JSON
领取专属 10元无门槛券
手把手带您无忧上云