在TensorFlow中,将.tflite模型转换为.pb冻结图的过程可以通过以下步骤完成:
import tensorflow as tf
tflite_model_path = 'path/to/your/model.tflite'
interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
graph_def = tf.compat.v1.GraphDef()
with tf.compat.v1.Session() as sess:
for detail in input_details:
tf_input = tf.compat.v1.placeholder(detail['dtype'], shape=detail['shape'], name=detail['name'])
tf.import_graph_def(graph_def, name='', input_map={detail['name']: tf_input})
for detail in output_details:
tf_output = sess.graph.get_tensor_by_name(detail['name'])
tf.import_graph_def(graph_def, name='', input_map={}, return_elements=[tf_output.op.name])
pb_model_path = 'path/to/save/model.pb'
with tf.compat.v1.gfile.GFile(pb_model_path, 'wb') as f:
f.write(graph_def.SerializeToString())
完成上述步骤后,你将得到一个.pb冻结的图形文件,可以在TensorFlow中使用。请注意,这只是将.tflite模型转换为.pb冻结图的一种方法,具体的实现可能因你的模型结构和需求而有所不同。
领取专属 10元无门槛券
手把手带您无忧上云