ggplot2的默认分面功能功能不够强大,支持的自定义参数也比较少,今天介绍的这个包可以对分面进行超多改头换面的操作!
R具有强大的统计计算功能和便捷的数据可视化系统。目前R主要支持四套图形系统:基础图形(base)、网格图形(grid)、lattice图形和ggplot2。其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。
R有几种不同的系统用来产生图形,但ggplot2是最优雅而多变的那一种。ggplot2实现了图形语法,一种描述和构建图形的逻辑系统。通过ggplo2,我们能够快速学习,多处应用。
我们之前探讨了如何使用散点图和回归模型拟合来可视化两个变量之间的关系,以及如何在其他分类变量的层次之间进行展示。 当然,还有一大类问题就是分类数据的问题了? 在这种情况下,散点图和回归模型方法将不起作用。当然,有几个观察可视化这种关系的选择,我们将在本章中讨论。
facet_grid()形成由行和列面化变量定义的面板矩阵。当有两个离散变量,并且这些变量的所有组合存在于数据中时,它是最有用的。如果只有一个具有多个级别的变量,请尝试facet_wrap()。
In a scatter plot, each row of data_frame is represented by a symbol mark in 2D space.
在BBC数据团队开发了一个R包,以ggplot2内部风格创建可发布出版物的图形,并且使新手更容易到R创建图形。 例如:
group1 = rep(gl(2, 5, labels = c("a", "b")), 2),
双变量数据可视化可能对于我们比较简单, 但是如果变量是三个或者更多,怎么在一幅图一起显示呢?今天我们就来讨论这个问题,解决方案有两种。
在美学映射那一节中,当我们需要把大于两个变量映射到图形中时,x轴和y轴就已经不够用了,需要通过形状和颜色等可区分的形式来代表新增的变量,但是一味的在一张图中增加多种映射会导致图上的信息密度过高,可读性差,这时分面的作用就体现出来了。
四种常见的作图系统中,ggplot2包基于一种全面的图形“语法”,提供了一种全新的图形创建方法。这个包极大地扩展了R绘图的范畴,提高了图形的质量。它通过全面一致的语法帮助我们将多变量的数据集进行可视化,并且很容易生成R自带图形难以生成的图形。
整理文本进行情感分析是典型的文本分析案例,当打算深度阅读一篇文章时,可以利用我们对单词的情感意图的理解来推断一篇文章是积极的还是消极的,或者其他可能带有一些更微妙的情感特征,比如惊讶或厌恶。最近特别好奇读文学相关的本科生或者硕士生到底毕业论文是写啥,从网上了解一番之后发现,部分文科生的毕业论文是这样的,《从Jane Austen个人感情经历来看<傲慢与偏见>中体现的爱情婚姻观》、《某某作家部分作品及其爱情观的分析》、《浅析某某作家笔下的人物性格魅力:以xxx为例》~
添加其他变量的一种方法是aesthetics。 另一种对分类变量特别有用的方法是将绘图分割为多个子图,每个子图显示一个数据子集。要通过单个变量来划分您的绘图,请使用facet_wrap()。 facet_wrap()的第一个参数应该是一个公式,你用〜后跟一个变量名创建(这里“formula”是R中数据结构的名称,而不是“equation”的同义词)。 传递给facet_wrap()的变量应该是离散的。
今天跟大家分享如何在R语言中利用ggplot函数制作箱线图及其美化。 箱线图也是经常会用到的用于呈现数据分布形态的重要的图表类型。 还是以ggplot2包内置的数据集为例进行案例演示: ggplot(
Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板,用户只需调用简单的API函数,即可快速生成漂亮的互动图表,可满足90%以上的应用场景。
ggplot2可以用来创建优雅的图形,由于它的灵活,简洁和一致的接口,可以提供美丽、可直接用来发表的图形,吸引了许多用户,特别是科研领域的用户。ggplot2使用grid包来提供一系列的高水平的函数,并将其延伸为图形语法,即独立指定绘图组件,并将它们组合起来,以构建我们想要的任何图形显示。图形语法包含6个主要成分:data, transformations, element, scales, guide和 coordinate system。图层图形语法源于多层数据构建图形的想法。它定义了下表中的图形组分:data, aesthetic mappings, statistical transformations, geometric objects, position adjustment, scales, coordinate system 和 faceting(数据、几何映射、统计变换、几何对象、位置调整、比例、坐标和面)。数据、几何映射、统计变换、几何对象、位置调整形成一个图层,一个图可以有多个图层。
柱状图绘制 柱状图也是较为常见的一种数据展示方式,可以展示基因的表达量,也可以展示GO富集分析结果,基因注释数据等。 常规矩阵柱状图绘制 有如下4个基因在5组样品中的表达值 data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;2.6;2.9;2.1;2.0;2.2 b;20.8;9.8;7.0;3.7;19.2 c;10.0;11.0;9.2;12.4;9.6 d;9;3.3;10.3;11.1;10" data <- read.table(text=data_ori
英国广播公司(British Broadcasting Corporation;BBC)是全球最大的新闻媒体,其中各类新闻稿件采用的统计图表能很好地传达信息。为了方便清洗可重复数据和绘制图表,BBC数据团队用R对数据进行处理和可视化,经年累月下于去年整理绘图经验并开发了R包-bbplot,帮助我们画出和BBC新闻中一样好看的图形。
参见:https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/#prep(挑选的翻译了全文,并结合了一些自己的经验)
Python的一个高级可视化库plotly_express是目前使用和见识过最棒的可视化库,通过这篇文章来入门这个可视化神器。
excel作为一个强大的统计工具,自身包含着一部分数据可视化的功能。R作为可视化的大势,自然也可以画出这些图,有一篇就通过ggplot2包进行了部分总结,甚是有趣,小编复刻学习了一番,现对代码做简单注释,以作分享。
一文爱上可视化神器plotly_express目前使用和见识过最棒的可视化库。必须爱上它❤️
原标题:Spring认证中国教育管理中心-Spring Data MongoDB教程七(内容来源:Spring中国教育管理中心)
With px.bar, each row of the DataFrame is represented as a rectangular mark.
主要内容是探索了NBA 14/15赛季常规赛MVP排行榜前四名 库里 哈登 詹姆斯 威少的投篮数据。今天重复第一个内容:用R语言的ggplot2画山脊图展示以上四人的投篮出手距离的分布。
1. ggplot2的安装:install.packages("ggplot2")。
ggplot2 包提供了一个基于全面而连贯的语法的绘图系统。它弥补了 R 中创建图形缺乏一致性的缺点,使得用户可以创建有创新性的、新颖的图形类型。ggplot2 是 R 语言绘图一个重要特性和优势。通过 ggplot2,只需少量的代码,就可以绘制出高质量的图形,满足出版需要。ggplot2 语法简介,逻辑清晰,功能强大,可以快速上手。在 R 语言中自成一派,目前也有越来越多的绘图包基于 ggplot2 进行二次开发,一般都是以“gg”开头,例如 ggpubr,ggtree,ggvis,ggtree,ggstatsplot 等。
ggplot2是由Hadley Wickham创建的一个十分强大的可视化R包。按照ggplot2的绘图理念,Plot(图)= data(数据集)+ Aesthetics(美学映射)+ Geometry(几何对象)。本文将从ggplot2的八大基本要素逐步介绍这个强大的R可视化包。
ps:高级绘图函数是指可以绘制出一张图,而低价绘图函数是指在图中添加的“零部件”,低级绘图函数必须在高级绘图函数的基础上才能绘制,二者都是base包的内容
要说ggplot2中那些使用不多但是却功能强大的图层函数,我首先想到的就是geom_rect、geom_linerange、geom_segment、geom_ploygon。
因为之前自己已经学习过R语言基础的一些内容,包括:数据类型与数据结构、函数与R包、R语言作图基础等,今天的学习内容主要是《R数据科学》这本书的第一章——使用ggplot2进行数据可视化。
# install.packages("ggpol") library(ggpol) 区间高亮标记 # geom_tshighlight 可以用来高亮时间序列中的一个时段 ggplot(economics, aes(x = date, y = unemploy)) + geom_line() + geom_tshighlight( aes(xmin = as.Date("01/01/1990", format = "%d/%m/%Y"), xmax = as.Date("0
很久没有更新Plotly相关的文章,国庆这几天终于干了一篇。选择的主题是:玩转Plotly图例设置,也是一直以来都想写的一个话题,文章的主要内容为:
前面所讲的图形都是简单图形的拼接,所谓简单,指得是两幅图的布局相同,但是如果两幅图的布局不同,那么利用align来拼图就不行了,这个时候需要使用axis参数,来对齐x轴和y轴。
ggplot2是《The Grammar of Graphics》/《图形的语法》中提出了一套图形语法,将图形元素抽象成可以自由组合的要素,类似Photoshop中的图层累加,ggplot2将指定的元素/映射关系逐层叠加,最终形成所图形。更加深入学习ggplot2,请参考《ggplot2: 数据分析与图形艺术》。
标度负责控制映射后图形属性的显示方式。具体形式上来看是图例和坐标刻度。Scale和Mapping是紧密相关的概念。
这里介绍一下grafify这个包,虽然它只能做基础绘图和基础分析,比如说柱状图、点图和ANOVA,
统计学一直是让医学生头疼的课程,文章中各式各样的统计方法让人云里雾里。举个简单的例子,两组之间的比较,该怎么分析?你肯跟会说用t检验,不过t检验一定是正确的吗?是否方差齐性,是否正态分布,这些都是我们要关心的,如果方差不齐,我们该怎么办?如果有很多分组,我们两两之间必要,也要花费很多的时间。那有没有什么快速、高效、准确的方法,能够让我们快速准确绘制统计检验的图形呢?哈哈,今天我们就来学习一下如何用最快最简单的方式完成统计检验和绘制发表级的图片吧!
本文主要是seaborn从入门到精通系列第3篇,本文介绍了seaborn的绘图功能实现,本文是分类绘图,同时介绍了较好的参考文档置于博客前面,读者可以重点查看参考链接。本系列的目的是可以完整的完成seaborn从入门到精通。重点参考连接
本文对课程数据集及泰坦尼克号数据集进行了实例讲解,一步一步带你绘制数据可视化中常用的五种图形,并对数据间可能存在的相关性做出了阐述。
ggside有点类似于ggExtra,是用来添加边际图形的,但是比ggExtra更加灵活。可以添加非常多的类型,在语法上也更加靠近ggplot2的写法。
ggside 包旨在使用户能够轻松地将metadata添加到他们的 ggplots 中。ggside对于一些复杂数据的处理优于patchwork。
本文在做学术论文中,正好想做一下把y轴一些数据进行截断的效果。通过网上检索,整理了一下两种方式构建坐标轴截断图。
如前文所述,ggplot2使用图层将各种图形元素逐步添加组合,从而形成最终结果。第一层必须是原始数据层,其中data参数控制数据来源,注意数据形式只能是数据框格式。aes参数控制了对哪些变量进行图形映射,以及映射方式,aes是Aesthetic的缩写。 下面我们来绘制一个直方图作为示例。数据集仍采取mpg,对hwy变量绘制直方图。首先加载了扩展包,然后用ggplot函数建立了第一层,hwy 数据映射到X轴上;使用+号增加了第二层,即直方图对象层。此时p被视为一种层对象,使用su
本文将探讨三种用Python可视化数据的不同方法。以可视化《2019年世界幸福报告》的数据为例,本文用Gapminder和Wikipedia的信息丰富了《世界幸福报告》数据,以探索新的数据关系和可视化方法。
ggplot2是R中用于绘图的高级程序包,它将绘图视为一种映射—数学空问到图形元索空间的映射,例如将不同的数值映射为不同的颜色或其他图形属性。ggplot2在画图时就是采用了类似photoshop的图层设计方式,允许用户一步步构建图形,并且便于图层的修改。
Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。
https://www.nature.com/articles/s41588-022-01051-w
领取专属 10元无门槛券
手把手带您无忧上云