在GCP应用引擎部署中降低费用的方法有以下几点:
推荐的腾讯云相关产品和产品介绍链接地址:
早在 2019 年 3 月,我就建立了一个名为 AI Dungeon 的 hackathon 项目。这个项目是一个经典的文本冒险游戏。故事的内容和所呈现的潜在动作都是通过机器学习产生的:
多亏了更快更好的计算,我们终于能利用神经网络和深度学习真正的力量了,这都得益于更快更好的 CPU 和 GPU。无论我们喜不喜欢,传统的统计学和机器学习模型在处理高维的、非结构化数据、更复杂和大量数据的问题上存在很大的局限性。 深度学习的好处在于,在构建解决方案时,我们有更好的计算力、更多数据和各种易于使用的开源框架,比如 keras、TensorFlow 以及 PyTorch。 深度学习的坏处是什么呢?从头开始构建你自己的深度学习环境是很痛苦的事,尤其是当你迫不及待要开始写代码和实现自己的深度学习模型的时候。
注:本文专用于2019年3月29日前的谷歌云专业数据工程师认证考试。此后我也做了一些更新,放在了Extras的部分。
《云上应用技术架构》是一本全面详尽的专业手册,旨在为应用运维人员、平台架构师和解决方案架构师提供在云环境中构建、管理和优化应用程序的必备知识和技能。本书精心设计了丰富的内容体系,涵盖了从基础的云架构设计,到复杂的数据架构和安全性设计等多个关键主题。
简介:本文讲述了我们在首款产品上市之前就差点破产、最后幸存下来并从中汲取教训的故事。
作者 | Nsikan Essien 译者 | 刘雅梦 策划 | 丁晓昀 GitHub 的 CI/CD 服务产品 GitHub Actions 现在支持使用 Open Identity Connect 凭证对 Hashicorp Vault、AWS、Azure 和 GCP 等云提供商进行身份验证,而无需使用长期凭证或密码。 云的现代开发通常需要针对云提供商对持续集成和持续部署(CI/CD)服务器进行身份验证,以便对已配置的基础设施进行更改。从历史上看,这是通过在云提供商中创建一个身份来实现的,CI
整理|褚杏娟、核子可乐 近日,加州大学伯克利分校的 Sky Computing 实验室发布了开源框架 SkyPilot,这套框架能够在任何云环境上无缝、且经济高效地运行机器学习与数据科学批量作业,适用于多云和单云用户。SkyPilot 的目标是大大降低云使用门槛、控制运行成本,而且全程无需任何云基础设施专业知识。 SkyPilot GitHub 地址: https://github.com/skypilot-org/skypilot 据悉,Sky Computing 实验室成员研发了一年多的时间,Sky
分发深度学习模型训练已经成为何时进行训练的问题,而不是如果这样做。最先进的ML模型(例如BERT)具有数亿个参数,而在一台机器上训练这些大型网络将花费数天甚至数周的时间。
Kubernetes 早已成为容器编排引擎的事实标准,而随着 Kubernetes 环境的复杂性持续增长,成本也在不断攀升。CNCF 发布的调查报告《Kubernetes 的 FinOps》显示,68%的受访者表示 Kubernetes 开销正在上涨,并且一半的人所在的组织经历了每年超过20%的开销增长。
Google Cloud 的 IoT Core 产品将于 2023 年 8 月 16 日停止服务,随着这一日期的临近,许多用户正在为他们现有的物联网业务寻找新的解决方案,而 EMQX 企业版是实现这一目标的理想选择。
今天的帖子来自CNCF大使兼Streamroot工程副总裁Reda Benzair。文章最初在Streamroot技术开发者的博客上发布。
公共云网络创业公司Aviatrix推出了一项托管服务来在三大云环境中构建和管理虚拟私有云(VPC)网络:亚马逊网络服务(AWS),Microsoft Azure和Google云平台(GCP)。
近些年国内市场,尤其是互联网行业,竞争非常激烈,也越来越饱和,于是很多产品纷纷出海。他们的发行方式多种多样,服务部署方式相应的有所不同:有自己部署在aws/gcp/azure等公有云上的,也有部署在海外IDC服务器的,这两种方式面对的安全威胁也多种多样,但有一点是共同的,那就是DDoS攻击。因此,当下研究中国企业海外业务DDoS防护解决方案,显得十分必要。
随着软件供应链攻击的增加,保护我们的软件供应链变得更加重要。此外,在过去几年中,容器的采用也有所增加。有鉴于此,对容器镜像进行签名以帮助防止供应链攻击的需求日益增长。此外,我们今天使用的大多数容器,即使我们在生产环境中使用它们,也容易受到供应链攻击。在传统的 CI/CD 工作流中,我们构建镜像并将其推入注册中心。供应链安全的一个重要部分是我们构建的镜像的完整性,这意味着我们必须确保我们构建的镜像没有被篡改,这意味着保证我们从注册中心中提取的镜像与我们将要部署到生产系统中的镜像相同。证明镜像没有被篡改的最简单和最好的方法之一(多亏了 Sigstore)是在构建之后立即签名,并在允许它们部署到生产系统之前验证它。这就是 Cosign 和 Kyverno 发挥作用的地方。
高价值资产往往会被放错地方或被盗。我们回顾了Leverege如何使用GCP创建一个使用物联网设备的资产跟踪解决方案。
在本节中,我们将介绍 Google Cloud Platform(GCP)上的无服务器计算基础。 我们还将概述 GCP 上可用的 AI 组件,并向您介绍 GCP 上的各种计算和处理选项。
Lambda是AWS推出的基于Function-as-a-Service(FaaS)的Serverless服务。我结合项目使用体验,发现Lambda不适合或者说不能独立支撑以下场景: 用户期望稳定的低延迟 请求需要在多个函数间跳转 可预期的大量调用 与此同时,Lambda和其它AWS服务结合起来能为以下场景提供良好的解决方案: 作为监听器异步响应Webhook (API Gateway + SQS + Lambda) 处理需要延时执行或指定时间执行的任务 (Step Functions + SQS + La
既然這次是參加 DevOps 組別,勢必要與 DevOps 做個完美的結合。我們在過去的二十幾天內,一起探討了 k8s 的概念、各種不同的物件以及欣賞了各種不同的應用。最終,當然是希望將 k8s 套用到日常運作的系統內。在 GCP 中建立 k8s 叢集 已經介紹過如何在 GCP 平台上建立 k8s 叢集,因此利用這最後的時間,我們就以 GCP 當作例子示範來欣賞一下如何建立一條自動部署的 Pipeline。
为生产而构建的机器学习系统需要有效地培训、部署和更新机器学习模型。在决定每个系统的体系结构时,必须考虑各种因素。这篇博文的部分内容是基于Coursera和GCP(谷歌云平台)关于构建生产机器学习系统的课程。下面,我将列出构建可伸缩机器学习系统时需要考虑的一些问题:
作者 | Omer Hamerman 译者 | 明知山 策划 | 丁晓昀 在 IT 行业,我们经常会听到诸如云计算、容器、无服务器框架等术语。 那么什么是云计算?容器是如何工作的?函数又如何变成无服务器的? 本文将尝试解读这些技术术语,并探索开发人员应该如何在技术栈中考虑采用容器或无服务器函数。 例如,如果你的应用程序启动时间较长,那么容器可以更好地满足你的需求。 需要进行大规模伸缩的高效无状态函数将从运行无服务器函数中受益。 容器的工作原理 容器 是被打包好的应用程序,包含了代码以及必要的库
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
嗨,在当今动态的环境中,在 450 多家经过 Kubernetes 认证的服务提供商和众多经过 Kubernetes 认证的发行版中进行导航可能是一项艰巨的挑战。本博客旨在通过展示精心整理的2023 年最常用和最流行的 Kubernetes 工具列表来简化此过程。
张量处理单元(TPU)是 Google Cloud Platform(GCP)上高性能 AI 应用的基本构建块。 在本节中,我们将重点介绍 GCP 上的 TensorFlow。 本节包含三章。 我们将深入介绍 Cloud TPU,以及如何利用它们来构建重要的 AI 应用。 我们还将通过利用 Cloud TPU 构建预测应用,使用 Cloud ML Engine 实现 TensorFlow 模型。
分析公司Gartner预测,到2023年,70%的组织将在生产中运行三个或更多容器化应用程序。容器、Kubernetes和微服务应用模式是企业IT创新和数字化转型的三大驱动力。很多公司已经采用这些技术,发挥其在应用程序开发和部署方面的优势。
微软Project Brainwave是一个基于FPGA的低延迟深度学习云平台。微软创新地使用了英特尔提供的Stratix10 FPGA,创新的硬件赋予了这一深度学习云平台强大的计算性能。随着英特尔在人工智能领域的投入不断深化,越来越多的云服务提供商通过英特尔架构获取更高的性能,以及更可控的基础设施构建和运维成本。
众所周知,目前的云计算市场中,亚马逊AWS、微软Azure和谷歌云平台是最大的“玩家”,他们各自都有自己的术语、定价、服务目录和购买版本,因此用户在评估该选择哪个公共云提供商时很容易陷入分歧,下面我们来一起看一下这些差异是否真的会真正带来影响。
ChatGPT能否取代Google、百度这样的传统搜索引擎?为什么中国不能很快做出ChatGPT?当前,对这些问题的探讨大多囿于大型语言模型(LLM)的技术可行性,忽略或者非常粗糙地估计了实现这些目标背后的经济成本,从而造成对LLM的开发和应用偏离实际的误判。 本文作者从经济学切入,详细推导了类ChatGPT模型搜索的成本、训练GPT-3以及绘制LLM成本轨迹的通用框架,为探讨LLM成本结构和其未来发展提供了可贵的参考视角。 来源 | OneFlow、作者|Sunyan、翻译|杨婷、徐佳渝、贾川 重点概览:
Kubernetes 的稳健性、可靠性使它成为现阶段最流行的云原生技术之一,但也有不少用户反映, Kubernetes 技术学习起来十分复杂,只适用于大集群且成本较高。这篇文章将打破你的观念,教你在小型项目中部署 Kubernetes 集群。
最近随着Snowflake上市后市值的暴增(目前700亿美金左右),整个市场对原生云数仓都关注起来。近日,一家第三方叫GigaOM的公司对主流的几个云数仓进行了性能的对比,包括Actian Avalanche、Amazon Redshift、Microsoft Azure Synapse、Google BigQuery、Snowflake,基本涵盖了目前市场上主流的云数仓服务。
Source What is the Serverless architecture? - Java Stack Flow Technology is rapidly growing day by d
Part1Source What is the Serverless architecture? - Java Stack Flow image.png Technology is rapidly g
Dapp 体验报告 Dapp是分散式的应用程序。DApp运行在去中心化的网络上,也就是区块链网络中。网络中不存在中心化的节点可以完整的控制DApp。 必须依赖合约部署,没有一个中心化的服务器托管。 对比现代web应用程序依赖的基础设施,其中存在单点故障的问题。这些单点故障包括服务器基础设施、代码库、数据库等。随着高可用性和可靠的基础设施服务商(GCP和AWS等)出现,减轻单点故障方面取得进展,但强如亚马逊,也会出现2018年初的停运,很难避免停机。 Dapp通过在多个对等节点网络上存储数据或基础架构的关键组
将机器学习(ML)模型部署到生产环境中的一个常见模式是将这些模型作为 RESTful API 微服务公开,这些微服务从 Docker 容器中托管,例如使用 SciKit Learn 或 Keras 包训练的 ML 模型,这些模型可以提供对新数据的预测。然后,可以将它们部署到云环境中,以处理维护连续可用性所需的所有事情,例如容错、自动缩放、负载平衡和滚动服务更新。
如果您想从事DevOps行当,了解DevOps工程师的薪资前景是最先要迈出的关键步骤之一。 鉴于DevOps工程成为一个新兴行当,了解合理的报酬水平是什么样可能令人困惑,如果您是这个行当的新手,更让人一头雾水。“合理”的DevOps工程师薪水因公司而异。此外,将你作为DevOps工程师的角色与你在开发行业的同仁区分开来可能颇具挑战性。 本文分析了目前市面上DevOps工程师的薪资水平,并着重介绍了你对这个行业要了解的所有信息。 DevOps工程师简介 DevOps工程师是开发和运营方面拥有丰富知识的IT专业
在本教程中,我将向大家展示如何在Google AutoML中创建单个标签分类模型。我们将使用来自generate.photos的AI生成的面孔数据集。通过算法训练来判断一张脸是男性还是女性。之后,我们会将模型部署到云中,并创建该算法的Web浏览器版本。
值此新春佳节将近之际,JFrog为广大DevOps团队奉上新春福利:我们宣布一项能够为我们的客户和整个DevOps社区带来实质性收益的重大举措,那就是,JFrog与Docker建立开创性的合作伙伴关系,使JFrog DevOps平台的云用户免于Docker Hub的镜像拉取的速度限制。
CureIAM是一款针对GCP基础设施的账号权限安全检查与管理工具,该工具易于使用,是一个功能强大且易于使用的可靠高性能引擎。在该工具的帮助下,广大研究人员能够以自动化的形式在GCP云基础设施上实践最低权限原则。
Service Mesher 社区牵头启动 Istio 文档翻译工作之后,为降低维护工作量,我们开发了一个 Github Webhook 项目,用 Github Issue 的方式对社区翻译工作流程提供自动化支持。同时也开发了一个 Chatbot 来完成任务的维护工作。
作为全球最具权威的IT研究与顾问咨询公司,Gartner报告非常值得从业者研究学习。从中我们可以了解到更多行业、产品、技术发展趋势。近日,数据库领域的重磅报告《Magic Quadrant for Cloud Database Management Systems》悄然出炉。作为数据库领域的重要组成部分,云数据库近些年来发展迅速。2020年,Gartner将魔力象限从Operational Database更名为Cloud Database。从2020年的数据来看,云数据库已占据整体数据库市场份额的40%,且贡献了增长市场的9成以上份额。据Gartner预测,到2022年云数据库营收数据将占据数据库整体市场的半数以上。可以说,云数据库代表着数据库行业的未来。本文将尝试从多角度加以分析,窥视云数据库2021发展变化。文中仅代表个人观点,如有偏颇,欢迎指正。
如今,随着云计算的发展,几乎每个企业都在使用或将要使用它,但是,公司可能不会选择相同类型的云模型,实际上,存在三种不同的云模型,包括私有云、公共云和混合云,其中最常见的是私有云和公共云。
Pinterest 由于在某个节日期间对云计算使用量的增加,该公司的云计算账单大大超过了原先的预估。Pinterest 必须计划 1.7 亿美元的预留资源上向亚马逊云科技再额外支付 2000 万美元。
正如其名称所示,私有云是专用于单个组织的云计算服务。在私有云中,计算资源通过安全的私有网络交付,用户无需与任何其他组织共享云计算资源。
一说到无服务计算(Serverless computing),很多人脑海中马上浮现出几个熟悉且令人兴奋的词汇:“瞬间启动”、“弹性扩缩容”和“按量计费”等等。如今,随着公有云的普及,几乎每过一段时间我们都会听到有新的无服务计算产品问世。同时,许多知名的云服务产品,如 AWS Aurora、AWS Redshift、Databricks 等,都陆续推出了它们的无服务版本。一时间,无服务计算迅速成为了行业内的焦点,无论是创业公司还是大型厂商,都在探索推出无服务产品的可能性,甚至在近期备受瞩目的大模型领域,也涌现出了许多关于无服务机器学习平台的讨论。
欢迎回到数据库深度探索,在这里我们将与数据库领域的工程师、构建者和领导者进行一对一的交流。最近,我们采访了来自MongoDB的Richard Kreuter。
原文:https://medium.com/high-alpha/event-driven-architecture-a-primer-f636395d0295
MySQL团队在Oracle Cloud Infrastructure(OCI)中引入MySQL数据库服务,这是MySQL团队100%开发,管理和支持的唯一服务。
你有一个新软件产品的想法,你已经完成了你的研究,创建了一个受众并承诺每个人都会解决这个问题。在下文中,我将为您提供一个经过验证的清单和构建 SaaS 的最佳实践。 如今,我们有无数的工具来构建软件。从编程语言、框架和云平台到 nocode 应用程序构建器。此外,市场上充斥着各种提高用户期望的 SaaS 产品。 定义核心 因为竞争如此激烈,你不能不断地重新发明轮子。相反,您的主要目标应该是尽快掌握核心功能。 但核心功能究竟是什么?假设您想创建一个新的送餐应用程序。除非您创建一种新的独特的用户身份验证方式
领取专属 10元无门槛券
手把手带您无忧上云