首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在java中使用in-shuffle和out-shuffle创建riffle shuffle

在Java中使用in-shuffle和out-shuffle创建riffle shuffle可以通过洗牌算法来实现。洗牌算法是一种随机打乱元素顺序的算法,其中in-shuffle和out-shuffle是两种常见的洗牌算法。

  1. In-shuffle(内洗牌):
    • 概念:将一副牌分成两半,然后交叉插入洗牌,即将第一张牌与第二半的第一张牌交替放置,然后将第二张牌与第二半的第二张牌交替放置,以此类推。
    • 优势:简单易实现,洗牌效果较好。
    • 应用场景:适用于需要较好的随机性和洗牌效果的场景。
    • 示例代码:
    • 示例代码:
  • Out-shuffle(外洗牌):
    • 概念:将一副牌分成两半,然后从两半的最后一张牌开始交替插入洗牌,即将第一半的最后一张牌与第二半的最后一张牌交替放置,然后将第一半的倒数第二张牌与第二半的倒数第二张牌交替放置,以此类推。
    • 优势:洗牌效果更好,随机性更强。
    • 应用场景:适用于需要更好的随机性和洗牌效果的场景。
    • 示例代码:
    • 示例代码:
  • Riffle Shuffle(洗牌算法):
    • 概念:Riffle Shuffle是将in-shuffle和out-shuffle结合起来的一种洗牌算法,通过多次交替应用in-shuffle和out-shuffle来达到更好的洗牌效果。
    • 优势:具有较好的随机性和洗牌效果。
    • 应用场景:适用于需要高质量洗牌的场景,如扑克牌游戏、随机抽取等。
    • 示例代码:
    • 示例代码:

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云云服务器(ECS):https://cloud.tencent.com/product/cvm
  • 腾讯云云数据库 MySQL 版:https://cloud.tencent.com/product/cdb_mysql
  • 腾讯云人工智能平台(AI Lab):https://cloud.tencent.com/product/ai
  • 腾讯云物联网平台(IoT Hub):https://cloud.tencent.com/product/iothub
  • 腾讯云移动开发平台(移动推送):https://cloud.tencent.com/product/umeng
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链服务(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云元宇宙服务(Tencent Real-Time Volumetric Cloud):https://cloud.tencent.com/product/trtc
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 重磅 | MIT AI 实验室发布16大年度黑科技:神经网络与机器人最前沿

    【新智元导读】MIT人工智能实验室( CSAIL )近日在官网刊文,回顾了实验室在过去一年所取得的技术突破。他们在机器人、计算机视觉、神经网络等方面取得了瞩目的成绩,具体说来,有可触摸的交互式动态视频技术、可以”预测未来“的深度神经网络以及能描绘出黑洞照片的程序……CSAIL 在人工智能的研究和探索上一直都处于学界前沿,其技术和研究视野得到了广泛的认可,被称为前沿科技的“代名词”。想了解人工智能研究的真实状况和未来发展趋势,看看他们都在干什么吧。 能够预测未来的机器,能够修复伤口的机器人,无线情绪检测器,这

    03

    大数据技术之_19_Spark学习_07_Spark 性能调优 + 数据倾斜调优 + 运行资源调优 + 程序开发调优 + Shuffle 调优 + GC 调优 + Spark 企业应用案例

    每一台 host 上面可以并行 N 个 worker,每一个 worker 下面可以并行 M 个 executor,task 们会被分配到 executor 上面去执行。stage 指的是一组并行运行的 task,stage 内部是不能出现 shuffle 的,因为 shuffle 就像篱笆一样阻止了并行 task 的运行,遇到 shuffle 就意味着到了 stage 的边界。   CPU 的 core 数量,每个 executor 可以占用一个或多个 core,可以通过观察 CPU 的使用率变化来了解计算资源的使用情况,例如,很常见的一种浪费是一个 executor 占用了多个 core,但是总的 CPU 使用率却不高(因为一个 executor 并不总能充分利用多核的能力),这个时候可以考虑让一个 executor 占用更少的 core,同时 worker 下面增加更多的 executor,或者一台 host 上面增加更多的 worker 来增加并行执行的 executor 的数量,从而增加 CPU 利用率。但是增加 executor 的时候需要考虑好内存消耗,因为一台机器的内存分配给越多的 executor,每个 executor 的内存就越小,以致出现过多的数据 spill over 甚至 out of memory 的情况。   partition 和 parallelism,partition 指的就是数据分片的数量,每一次 task 只能处理一个 partition 的数据,这个值太小了会导致每片数据量太大,导致内存压力,或者诸多 executor 的计算能力无法利用充分;但是如果太大了则会导致分片太多,执行效率降低。在执行 action 类型操作的时候(比如各种 reduce 操作),partition 的数量会选择 parent RDD 中最大的那一个。而 parallelism 则指的是在 RDD 进行 reduce 类操作的时候,默认返回数据的 paritition 数量(而在进行 map 类操作的时候,partition 数量通常取自 parent RDD 中较大的一个,而且也不会涉及 shuffle,因此这个 parallelism 的参数没有影响)。所以说,这两个概念密切相关,都是涉及到数据分片的,作用方式其实是统一的。通过 spark.default.parallelism 可以设置默认的分片数量,而很多 RDD 的操作都可以指定一个 partition 参数来显式控制具体的分片数量。   看这样几个例子:   (1)实践中跑的 Spark job,有的特别慢,查看 CPU 利用率很低,可以尝试减少每个 executor 占用 CPU core 的数量,增加并行的 executor 数量,同时配合增加分片,整体上增加了 CPU 的利用率,加快数据处理速度。   (2)发现某 job 很容易发生内存溢出,我们就增大分片数量,从而减少了每片数据的规模,同时还减少并行的 executor 数量,这样相同的内存资源分配给数量更少的 executor,相当于增加了每个 task 的内存分配,这样运行速度可能慢了些,但是总比 OOM 强。   (3)数据量特别少,有大量的小文件生成,就减少文件分片,没必要创建那么多 task,这种情况,如果只是最原始的 input 比较小,一般都能被注意到;但是,如果是在运算过程中,比如应用某个 reduceBy 或者某个 filter 以后,数据大量减少,这种低效情况就很少被留意到。   最后再补充一点,随着参数和配置的变化,性能的瓶颈是变化的,在分析问题的时候不要忘记。例如在每台机器上部署的 executor 数量增加的时候,性能一开始是增加的,同时也观察到 CPU 的平均使用率在增加;但是随着单台机器上的 executor 越来越多,性能下降了,因为随着 executor 的数量增加,被分配到每个 executor 的内存数量减小,在内存里直接操作的越来越少,spill over 到磁盘上的数据越来越多,自然性能就变差了。   下面给这样一个直观的例子,当前总的 cpu 利用率并不高:

    02
    领券