首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

在DataFrame中,柱状图将每一行中的值分组到并排的柱子中的一组。...现在让我们看下使用seaborn进行按星期几数值计算小费百分比(见图9-19中的结果图): In [83]: import seaborn as sns In [84]: tips['tip_pct']...▲图9-19 用错误栏按天显示小费百分比 seaborn中的绘图函数使用一个data参数,这个参数可以是pandas的DataFrame。其他的参数则与列名有关。...数据点被分成离散的,均匀间隔的箱,并且绘制每个箱中数据点的数量。...▲图9-26 按星期几数值/时间/是否吸烟划分的小费百分比 除了根据'time'在一个面内将不同的柱分组为不同的颜色,我们还可以通过每个时间值添加一行来扩展分面网格(见图9-27): In [109]:

5.4K40

使用R或者Python编程语言完成Excel的基础操作

数据格式设置:了解如何设置数据格式,包括数字、货币、日期、百分比等。 条件格式:学习如何使用条件格式来突出显示满足特定条件的单元格。 图表:学习如何根据数据创建图表,如柱状图、折线图、饼图等。...色阶:根据单元格的值变化显示颜色的深浅。 图标集:在单元格中显示图标,以直观地表示数据的大小。 公式和函数 数组公式:对一系列数据进行复杂的计算。...在Python编程语言中 处理表格数据通常使用Pandas库,它提供了非常强大的数据结构和数据分析工具。以下是如何在Python中使用Pandas完成类似于R语言中的操作,以及一个实战案例。...Python中使用Pandas库进行数据的读取、类型转换、增加列、分组求和、排序和查看结果。...Pandas提供了类似于R语言中的数据操作功能,使得数据处理变得非常直观和方便。 在Python中,处理表格数据的基础包是Pandas,但它本身已经是一个非常强大的库,提供了许多高级功能。

23910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python进行数据分析Pandas指南

    其中,Pandas是Python中最常用的数据分析库之一,而Jupyter Notebook则是一个流行的交互式计算环境,可让用户在浏览器中创建和共享文档,其中包含实时代码、可视化和解释性文本。...(data_cleaned.head())高级数据分析除了基本的数据分析和处理,Pandas还支持高级数据操作,如分组、合并和透视表。...接着,对清洗后的数据按产品类别进行分组,并计算了每个类别的总销售额。最后,使用Matplotlib创建了一个柱状图展示了不同产品类别的总销售额,并将处理后的数据导出到了一个新的CSV文件中。...总结本文介绍了如何利用Python中的Pandas和Jupyter Notebook进行数据分析,并提供了多个示例来展示它们的强大功能。...随后,我们展示了如何在Jupyter Notebook中结合Pandas进行交互式分析,以及如何利用Matplotlib和Seaborn等库进行数据可视化。

    1.4K380

    python数据分析——数据分类汇总与统计

    本文将介绍如何使用Python进行数据分类汇总与统计,帮助读者更好地理解和应用数据。 首先,我们需要导入一些常用的Python库,如pandas、numpy和matplotlib等。...1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...agg函数也是我们使用pandas进行数据分析过程中,针对数据分组常用的一条函数。...关键技术:在pandas中透视表操作由pivot_table()函数实现,其中在所有参数中,values、index、 columns最为关键,它们分别对应Excel透视表中的值、行、列。...columns:要在列中分组的值 values:聚合计算的值,需指定aggfunc aggfunc:聚合函数,如指定,还需指定value,默认是计数 rownames :列名称 colnames

    83910

    python数据分析——数据分类汇总与统计

    本文将介绍如何使用Python进行数据分类汇总与统计,帮助读者更好地理解和应用数据。 首先,我们需要导入一些常用的Python库,如pandas、numpy和matplotlib等。...语法 Pandas中的Groupby是一个强大的功能,用于将数据集按照指定的条件进行分组和聚合操作。它类似于SQL中的GROUP BY语句,可以对数据进行分组并对每个组进行统计、计算或其他操作。...下表是经过优化的groupby方法: 在使用groupby进行分组后,可以使用以下聚合函数进行数据聚合: count():计算每个分组中的非缺失值的数量。...sum():计算每个分组中的所有值的和。 mean():计算每个分组中的所有值的平均值。 median():计算每个分组中的所有值的中位数。 min():计算每个分组中的所有值的最小值。...max():计算每个分组中的所有值的最大值。 std():计算每个分组中的所有值的标准差。 var():计算每个分组中的所有值的方差。 size():计算每个分组中的元素数量。

    14610

    如何用 Python 执行常见的 Excel 和 SQL 任务

    使用 Python 的最大优点之一是能够从网络的巨大范围中获取数据的能力,而不是只能访问手动下载的文件。...有关数据结构,如列表和词典,如何在 Python 中的运行的更多信息,本教程将有所帮助。...这应该让你了解 Python 中数据可视化的强大功能。如果你感到不知所措,你可以使用一些解决方案,如Plot.ly,这可能更直观地掌握。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。...现在我们有一个连接表,我们希望将国家和人均 GDP 按其所在地区进行分组。 我们现在可以使用 Pandas 中的 group 方法排列按区域分组的数据。 ? ?

    10.8K60

    用Python执行SQL、Excel常见任务?10个方法全搞定!

    使用 Python 的最大优点之一是能够从网络的巨大范围中获取数据的能力,而不是只能访问手动下载的文件。...有关数据结构,如列表和词典,如何在 Python 中的运行的更多信息,本篇将有所帮助。...这应该让你了解 Python 中数据可视化的强大功能。如果你感到不知所措,你可以使用一些解决方案,如Plot.ly,这可能更直观地掌握。...对于熟悉 SQL join 的用户,你可以看到我们正在对原始 dataframe 的 Country 列进行内部连接。 ? 现在我们有一个连接表,我们希望将国家和人均 GDP 按其所在地区进行分组。...我们现在可以使用 Pandas 中的 group 方法排列按区域分组的数据。 ? ? 要是我们想看到 groupby 总结的永久观点怎么办?

    8.3K20

    七步搞定一个综合案例,掌握pandas进阶用法!

    每个城市会销售各种各样的产品,现在想要统计每个城市各个子类别中,累计销售数量筛选出每个城市每个子类别中销量占比top 50%的至多3个产品。...3.分组排序 由于我们最终需要取排序Top3(或top50%)的产品,因此需要在各组内先按照销售量降序排列,再计算百分比,最后求累计百分比。也可以先计算每个产品各自的占比,再排序之后求累计百分比。...各组内按销售数量(或百分比)做降序。这里的排序有两个层次的含义,第一种是组内实际顺序不变,只给一个排序编号。代码如下所示,method=first是保证序号是连续且唯一的。...第二种是排序之后,改变数据的实际顺序。我们使用lambda函数实现:对每个分组按照上一步生成的rank值,升序排列。...result.to_excel('result.xlsx', index=None) 小结 本文使用pandas,通过7个步骤实现了一个综合案例:筛选出每个城市每个子类别中销量占比top 50%的至多3

    2.7K40

    python数据科学系列:pandas入门详细教程

    pandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分析的基础工具包,享有数分三剑客之名...与[ ]访问类似,loc按标签访问时也是执行范围查询,包含两端结果 at/iat,loc和iloc的特殊形式,不支持切片访问,仅可以用单个标签值或单个索引值进行访问,一般返回标量结果,除非标签值存在重复...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...对象,功能与python中的普通map函数类似,即对给定序列中的每个值执行相同的映射操作,不同的是series中的map接口的映射方式既可以是一个函数,也可以是一个字典 ?...2 分组聚合 pandas的另一个强大的数据分析功能是分组聚合以及数据透视表,前者堪比SQL中的groupby,后者媲美Excel中的数据透视表。

    15.1K20

    Pandas库

    Series: Series是一种一维的数据结构,类似于Python中的基本数据结构list,但区别在于Series只允许存储相同的数据类型。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...缺失值处理(Missing Value Handling) : 处理缺失值是时间序列数据分析的重要步骤之一。Pandas提供了多种方法来检测和填补缺失值,如线性插值、前向填充和后向填充等。...例如,计算每个学生的平均成绩: average_score = df['成绩'].mean() print(average_score) 可以通过设置axis参数来指定是按列(0)还是按行(...Pandas作为Python中一个重要的数据分析库,相较于其他数据分析库(如NumPy、SciPy)具有以下独特优势: 灵活的数据结构:Pandas提供了两种主要的数据结构,即Series和DataFrame

    8510

    Python报表自动化

    2.Excel制作过程 结合以上两张图,我们知道利用Excel的数据透视表功能就制作该报表:选中数据表中任意一个单元格,点击插入数据透视表,然后按以下步骤执行: 将合同生效日字段放在页区域(筛选今年)...将单位字段放在透视表的行区域。 ? 当处理到单位字段时我们会发现,表中每一笔贷款都有三家网点进行业绩分成。我们需要将分成比例也考虑进去。所以透视表中的行区域及值区域不能简单的放入单位1和贷款金额。...此时大部分人都会想到先在数据源表格中添加三列按分成比例分成以后的贷款金额。 ?...3.5数据分组/透视 3.5.1空值处理 此时利用info()返回的数据可以判断data4是否存在空值。...然后按下图所示点击 Run All 执行以上代码就可以一键完成我们每天需要的日报了。 ? 其实以上模型处理除了可以计算年累计投放数据以外,我们还可以通过修改日期筛选的范围。

    4.1K41

    高效的10个Pandas函数,你都用过吗?

    Python大数据分析 记录 分享 成长 ❝文章来源:towardsdatascience 作者:Soner Yıldırım 翻译\编辑:Python大数据分析 ❞ Pandas是python...,如 column='新的一列' value:新列的值,数字、array、series等都可以 allow_duplicates: 是否允许列名重复,选择Ture表示允许新的列名与已存在的列名重复 接着用前面的...我们只知道当年度的值value_1、value_2,现在求group分组下的累计值,比如A、2014之前的累计值,可以用cumsum函数来实现。...当然仅用cumsum函数没办法对groups (A, B, C)进行区分,所以需要结合分组函数groupby分别对(A, B, C)进行值的累加。...比如有一个序列[1,7,5,3],使用rank从小到大排名后,返回[1,4,3,2],这就是前面那个序列每个值的排名位置。

    4.2K20

    Pandas 秘籍:6~11

    检查索引对象 如第 1 章,“Pandas 基础”中所讨论的,序列和数据帧的每个轴都有一个索引对象,用于标记值。 有许多不同类型的索引对象,但是它们都具有相同的共同行为。.../img/00140.jpeg)] 另见 Pandas apply和groupby方法的官方文档 Python OrderedDict类的官方文档 SciPy stats模块的官方文档 按连续变量分组...在步骤 2 中,我们创建了一个中间对象,可帮助我们了解如何在数据内形成组。resample的第一个参数是rule,用于确定如何对索引中的时间戳进行分组。...resample方法允许您按一段时间分组并分别汇总特定的列。 准备 在本秘籍中,我们将使用resample方法对一年中的每个季度进行分组,然后分别汇总犯罪和交通事故的数量。...在第 5 步中,通过将每个值除以其行总数,可以找到每个组在所有组中占总数的百分比。 默认情况下,Pandas 会自动按对象的列对齐对象,因此我们不能使用除法运算符。

    34K10

    Pandas 学习手册中文第二版:11~15

    本章将研究 Pandas 执行数据聚合的功能。 这包括强大的拆分应用组合模式,用于分组,执行组级别的转换和分析,以及报告聚合 Pandas 对象中每个组的结果。...具体而言,在本章中,我们将介绍: 数据分析的拆分,应用和合并模式概述 按单个列的值分组 访问 Pandas 分组的结果 使用多列中的值进行分组 使用索引级别分组 将聚合函数应用于分组数据 数据转换概述...按单个列的值来分组 传感器数据由三个类别变量(sensor,interval和axis)和一个连续变量(reading)组成。...用分组的平均值填充缺失值 使用分组数据进行统计分析的常见转换是用组中非NaN值的平均值替换每个组中的缺失数据。...介绍了拆分应用组合模式,并概述了如何在 Pandas 中实现这种模式。 然后,我们学习了如何基于列和索引级别中的数据将数据分为几组。 然后,我们研究了如何使用聚合函数和转换来处理每个组中的数据。

    3.4K20

    一场pandas与SQL的巅峰大战(五)

    本文目录: 数据准备 MySQL 计算累计百分比 1.不分组情况 2.分组情况 Hive SQL计算累计百分比 1.不分组情况 2.分组情况 pandas计算累计百分比...本篇文章一起来探讨如何在SQL和pandas中计算累计百分比。仍然分别在MySQL,Hive SQL和pandas中用多种方案来实现。...pandas计算累计百分比 在pandas中,提供了专门的函数来计算累计值,分别是cumsum函数,expanding函数,rolling函数。...参数min_periods表示最小的观测窗口,默认为1,可以设置为其他值,但如果窗口内记录数不足该值,则会显示NA。 有了累计值,计算累计的百分比,可以按照cumsum中的方法进行,此处省略。...接下来计算分组的总计值,这里用到了pandas中的transform函数,可以把分组后计算的总计值写入原dataframe。如果你不是很理解,可以参考下面这篇文章,讲的很清楚。

    2.6K10

    懂Excel轻松入门Python数据分析包pandas(二十一):透视表

    此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节文章最后我随手使用了 pandas 中的透视表操作,之后有些小伙伴询问我相关的问题。...列标签 放入的字段的唯一值,被显示在透视表的上方 只看数值看不出门路,设置百分比吧: - 点中透视表任意一格,鼠标右键 - 按上图指示完成 - 女性 生还率远高于 男性!!...pandas 中添加这2列是非常简单 "Excel 透视表是百分比呀" pandas 透视表功能没有参数设置,因为本身透视出来的还是一个 DataFrame ,这可以利用之前学到的一切技巧来为这个...解决思路就是:把 ticket 列内容相同的归为一组,组内有多于1行记录的,就是有小伙伴一起上船的 相信一直看本系列的小伙伴马上就知道,这在 pandas 中不就是分组操作吗!

    1.7K20

    懂Excel轻松入门Python数据分析包pandas(二十一):透视表

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节文章最后我随手使用了 pandas 中的透视表操作,之后有些小伙伴询问我相关的问题。...列标签 放入的字段的唯一值,被显示在透视表的上方 只看数值看不出门路,设置百分比吧: - 点中透视表任意一格,鼠标右键 - 按上图指示完成 - 女性 生还率远高于 男性!!...2个参数,因为 pandas 中添加这2列是非常简单 "Excel 透视表是百分比呀" pandas 透视表功能没有参数设置,因为本身透视出来的还是一个 DataFrame ,这可以利用之前学到的一切技巧来为这个...这种设置不会影响数据类型,比如把此结果输出到 Excel ,仍然是小数 - 行9:每行(axis=1)做运算(apply),行中每个数字(r) 除以(/) 行中剔除最后一个数据(r[:-1])的总和(sum...解决思路就是:把 ticket 列内容相同的归为一组,组内有多于1行记录的,就是有小伙伴一起上船的 相信一直看本系列的小伙伴马上就知道,这在 pandas 中不就是分组操作吗!

    1.2K50

    pandas transform 数据转换的 4 个常用技巧!

    transform有4个比较常用的功能,总结如下: 转换数值 合并分组结果 过滤数据 结合分组处理缺失值 一....我们现在想知道每家餐厅在城市中所占的销售百分比是多少。 预期输出为: 传统方法是:先groupby分组,结合apply计算分组求和,再用merge合并原表,然后再apply计算百分比。...但其实用transform可以直接代替前面两个步骤(分组求和、合并),简单明了。 首先,用transform结合groupby按城市分组计算销售总和。...1, np.nan, np.nan, 2, 8, 2, np.nan, 3] }) 在上面的示例中,数据可以按name分为三组A、B、C,每组都有缺失值。...我们知道替换缺失值的常见的方法是用mean替换NaN。下面是每个组中的平均值。

    40020

    vba新姿势,如何让vba的数据处理超越Python

    性别(值),船舱等级(值)" 按 "性别" ,把数据拆分到不同的工作簿(文件),文件名字使用"性别值.xlsx",每个对应文件中,按 "船舱等级",拆分到不同的工作表,工作表名字使用"船舱等级(值)"...需要达到以下目标: vba 代码多余表达要接近于 python 代码 就算换另一份数据,只需要修改关键表达即可使用(比如按某字段分组,只需要修改字段名字即可),无须大范围修改代码。..._性别") ,就是分组+处理 参数1自然是数据数组 参数2是分组列,4表示第4列 参数3是每个组的处理逻辑,执行时,每一组"性别"的数据就会传入自定义方法中执行 红框方法中,xdf 参数实际也是一个二维数组...---- 数据的传递 需求3:按 "性别" ,把数据拆分到不同的工作簿(文件),文件名字使用"性别值.xlsx",每个对应文件中,按 "船舱等级",拆分到不同的工作表,工作表名字使用"船舱等级(值)"...pandas 实现: vba 实现: 注意绿色框中的调用,方法 groupby_apply 参数3之后,我们可以传递无数个参数,他们会组成一个字典,在组处理方法中参数3 kws,可以获取数据 看看每个方法中的处理

    3.1K10
    领券