首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在pandas中创建的条形图上获得x-tick的位置?

在pandas中创建条形图时,可以使用matplotlib库的函数来获取x轴刻度的位置。具体步骤如下:

  1. 导入所需的库:
代码语言:txt
复制
import pandas as pd
import matplotlib.pyplot as plt
  1. 创建数据集:
代码语言:txt
复制
data = {'A': [1, 2, 3, 4, 5],
        'B': [6, 7, 8, 9, 10]}
df = pd.DataFrame(data)
  1. 绘制条形图:
代码语言:txt
复制
ax = df.plot(kind='bar')
  1. 获取x轴刻度的位置:
代码语言:txt
复制
x_ticks = ax.get_xticks()

在这个例子中,x_ticks将包含x轴刻度的位置。你可以使用这些位置来进一步自定义x轴刻度的标签或进行其他操作。

关于pandas的条形图和matplotlib的函数,你可以参考以下链接:

请注意,以上答案中没有提及任何特定的云计算品牌商,如有需要,可以根据实际情况选择适合的云计算平台。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

何在 Pandas 创建一个空数据帧并向其附加行和列?

Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据帧有效实现。数据帧是一种二维数据结构。在数据帧,数据以表格形式在行和列对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据帧。大多数情况下,数据是从其他数据源(csv,excel,SQL等)导入到pandas数据帧。...在本教程,我们将学习如何创建一个空数据帧,以及如何在 Pandas 向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据帧进行操作的人来说非常有帮助。

27330
  • 使用 Bokeh 为你 Python 绘图添加交互性

    在这一系列文章,我通过在每个 Python 绘图库制作相同条形绘图,来研究不同 Python 绘图库特性。这次我重点介绍是 Bokeh(读作 “BOE-kay”)。...Bokeh 绘图比其它一些绘图库要复杂一些,但付出额外努力是有回报。Bokeh 设计既允许你在 Web 上创建自己交互式绘图,又能让你详细控制交互性如何工作。...数据可在线获得,可以用 Pandas 导入。...如下结果: 给条形图添加工具提示 要在条形图上添加工具提示,你只需要创建一个 HoverTool 对象并将其添加到你绘图中。...变量 @y 和 @x 是指你传入 ColumnDataSource 变量。你还可以使用一些其他值。例如,光标在图上位置由 $x 和 $y 给出(与 @x 和 @y 没有关系)。

    1.7K30

    原来使用 Pandas 绘制图表也这么惊艳

    数据可视化是捕捉趋势和分享从数据获得见解非常有效方式,流行可视化工具有很多,它们各具特色,但是在今天文章,我们将学习使用 Pandas 进行绘图。...Pandas plot() 方法 Pandas 附带了一些绘图功能,底层都是基于 Matplotlib 库,也就是说,由 Pandas创建任何绘图都是 Matplotlib 对象。...从技术上讲,Pandas plot() 方法通过 kind 关键字参数提供了一组绘图样式,以此来创建美观绘图。kind 参数默认值是行字符串值。...该图表可能包括特定类别的计数或任何定义值,并且条形长度对应于它们所代表值。 在下面的示例,我们将根据每月平均股价创建一个条形图,来比较每个公司在特定月份与其他公司平均股价。...字符串值分配给 kind 参数来创建水平条形图: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠垂直或水平条形图上绘制数据

    4.5K50

    绘制频率分布直方图三种方法,总结很用心!

    其中,Matplotlib和Pandas样式简单,看上去吸引力不大。Seaborn可往单变量直方图上添加很多东西,更美观,pandas可成组生成直方图。...Pandas模块 #注意直方图上添加核密度图,必须将直方图频数更改为频率,即normed参数设置成True #直方图 df.年龄.plot(kind="hist",bins=20,color="steelblue...6)、fit:指定一个随机分布对象,需调用scipy模块随机分布函数,用于绘制随机分布概率密度曲线。 7)、hist_kws:以字典形式传递直方图其他修饰属性,填充色、边框色、宽度等。...8)、kde_kws:以字典形式传递核密度图其他修饰属性,线颜色、线类型等。 9)、rug_kws:以字典形式传递须图其他修饰属性,线颜色、线宽度等。...16)、ax:指定子图位置。 Python新手成长之路案例集锦,长按关注:

    36.3K42

    Pandas绘图功能

    目录 柱状图 箱线图 密度图 条形图 散点图 折线图 保存绘图 总结 可视化是用来探索性数据分析最强大工具之一。Pandas库包含基本绘图功能,可以让你创建各种绘图。...Pandas绘图是在matplotlib之上构建,如果你很熟悉matplotlib你会惊奇地发现他们绘图风格是一样。 本案例用到数据集是关于钻石。...柱状图 柱状图是一个单变量图(注意区分柱状图和条形图),它将一个数值变量分组到各个数值单元,并显示每个单元观察值数量。直方图是了解数值变量分布一种有用工具。...从图上我们可以看到钻石重量分布是十分倾斜:大多数钻石大约1克拉及以下,但也有极少量极端值。...可以使用二维表格创建堆积条形图。

    1.7K10

    何在 Python 中使用 plotly 创建人口金字塔?

    人口金字塔是一个强大可视化工具,可以帮助我们了解人口的人口构成并识别趋势和模式。 在本文中,我们将探讨如何在 Python 中使用 Plotly 创建人口金字塔。...Plotly是一个强大可视化库,允许我们在Python创建交互式和动态绘图。 我们将使用 Plotly 创建一个人口金字塔,该金字塔显示人口年龄和性别分布。...plotly.express 和用于将数据加载到数据帧 pandas。...然后,我们创建 px.bar() 函数,该函数将数据帧作为第一个参数,并采用其他几个参数来指定绘图布局和样式。 x 参数指定要用于条形长度变量,条形长度是每个年龄组的人数。...数据使用 pd.read_csv 方法加载到熊猫数据帧。 使用 go 为男性和女性群体创建两个条形图轨迹。条形方法,分别具有计数和年龄组 x 和 y 值。

    37310

    Python中最常用 14 种数据可视化类型概念与代码

    以下是如何在情节做到这一点: import plotly.express as px df = px.data.gapminder().query("country=='Canada'") fig =...这些有两种类型: 威尔金森点图 在这个点图中,局部位移用于防止图上点重叠。 克利夫兰点图 这是一个类似散点图图表,在一个维度垂直显示数据。...散点图可以具有高或低负相关。 无相关性 如果在散点图上显示两组数据之间没有明显相关性,则认为它们不相关。 气泡图 气泡图显示数据三个属性。它们由 x 位置、y 位置和气泡大小表示。...它由从中心点绘制几个半径组成。 带标记雷达图 在这些,蜘蛛图上每个数据点都被标记。 填充雷达图 在填充雷达图中,线条和蜘蛛网中心之间空间是彩色。...中位数(小提琴图上一个白点) 四分位数范围(小提琴中心黑色条)。 较低/较高相邻值(黑色条形图)--分别定义为第一四分位数-1.5 IQR和第三四分位数+1.5 IQR。

    9.4K20

    数据导入与预处理-拓展-pandas可视化

    条形图 2.1 单行垂直/水平条形图 2.2 多行条形图 3. 直方图 3.1 生成数据 3.2 透明度/刻度/堆叠直方图 3.3 拆分子图 4....# 绘制 df 第一列折线图 df['A'].plot() plt.show() 输出为: 1.3 绘制多列折线图 df 四列分别放在四个子图上 # 折线图|子图 # 将 df 四列分别放在四个子图上...df.plot(subplots=True) plt.show() 输出为: df 四列分别放在一个图上 # 折线图|绘制 df 全部列折线图 # 同时指定 画布大小 标题 显示网格线 x...xlabel='时间', # x轴标签 ylabel='数量', # y轴标签 fontsize = 13) # 字体大小 # plt.legend(loc=4) # 指定图例位置...总结 关于pandas可视化用法还有很多,这里不再拓展,但还是建议使用matplotlib,seaborn等库完成绘图。

    3.1K20

    Python时间序列分析简介(2)

    在这里,我们可以看到在30天滚动窗口中有最大值。 使用Pandas绘制时间序列数据 有趣是,Pandas提供了一套很好内置可视化工具和技巧,可以帮助您可视化任何类型数据。...只需 在DataFrame上调用.plot函数即可获得基本线图 。 ? ? 在这里,我们可以看到随时间变化制造品装运价值。请注意,熊猫对我们x轴(时间序列索引)处理效果很好。...我们可以通过 在图上使用.set添加标题和y标签来进一步对其进行修改 。 ? 同样,我们可以通过改变土地大小 figsize 参数 .plot。 ? ? 现在,让我们绘制每年初始值平均值。...我们可以 在使用规则“ AS”重新采样后通过调用.plot来完成此操作, 因为“ AS”是年初规则。 ? ? 我们还可以通过 在.plot顶部调用.bar来绘制每年开始平均值 条形图。 ?...看看我如何在xlim添加日期。主要模式是 xlim = ['开始日期','结束日期']。 ? 在这里,您可以看到从1999年到2014年年初最大值输出。 学习成果 这使我们到了本文结尾。

    3.4K20

    SwiftUI水平条形

    SwiftUI水平条形图 水平条形图以矩形条形式呈现数据类别,其宽度与它们所代表数值成正比。本文展示了如何在垂直条形基础上创建一个水平柱状图。 水平条形图不是简单垂直条形旋转。...将条形图转换为水平 水平条形图不仅仅是在垂直条形图上配置,有一些元素是可以重复使用。...更新Y轴 我们创建了一个YaxisHView视图,用于在水平条形图上显示Y轴和条形图中数据类别。...在水平条形图中,显示条形图上数值并隐藏X轴可以使图表更简洁。 显示和隐藏水平条形图上元素 结论 创建水平条形SwiftUI代码与创建垂直条形代码不同。...在创建垂直条形图时学到技术可以重复使用,但最好将水平条形图视为与垂直条形图不同图表。当我们深入到轴等组件时,可以看到两个图表轴线都是一样,但是它们标签和定位在x和y之间是换位

    4.8K20

    数据可视化:认识Matplotlib

    Matplotlib简介 Matplotlib是一个Python全面的绘图库,用于创建静态、动画和交互式可视化。...scatter ()函数color表示颜色,marker表示点形状,与plot值通用。...在hist()方法参数含义如下: data:必选参数,绘图数据 bins:直方图条形数目,默认为10,为了更加明显地看出正态分布,可以设置大一些。...fc:全写为facecolor,长条形颜色 ec:全写为edgecolor,长条形边框颜色 条形图 在之前小节得到了高分电影上映年份TOP,现在我们就将此数据做成可视化条形图。...() ax = plt.bar(x, y, width=0.4) # 添加横坐标显示 plt.xticks(x, x) # 在每个条形图上方显示数值 for a, b in zip(x, y): plt.text

    21320

    Matplotlib引领数据图表绘制

    figure ,我们可以自己创建 figure,可以控制更多参数,常见就是控制图形大小 plt.figure(figsize=(6, 3)) plt.plot(x, y) plt.plot...loc 关键字控制,其取值范围为 0-10,每个数字代表图表一处位置 添加注释 有时候我们需要对特定点进行标注,我们可以使用 plt.annotate 函数来实现   这里我们要标注点是...这些包括 - bar或barh为条形 hist为直方图 boxplot为盒型图 area为“面积” scatter为散点图 条形图 现在通过创建一个条形图来看看条形图是什么。...条形图可以通过以下方式来创建 - import pandas as pd import numpy as np df = pd.DataFrame(np.random.rand(10,4),columns...(np.random.rand(10,4),columns=['a','b','c','d']) df.plot.bar(stacked=True) 要获得水平条形图,使用barh()方法 - import

    20910

    安利 5 个拍案叫绝 Matplotlib 骚操作!

    Span Selector Span Selector是Matplotlib鼠标小部件,widgets是用于包含一些交互功能python对象。...Span Selector可以通过鼠标框选,方便地查看选定区域最大值和最小值。 下面是代码,首先创建一个基本折线图作为例子。...Broken Barh Broken水平条形图是不连续具有间隙图,它可用于数据值相差很大情况下,例如,包含极端温度范围数据集。...在这种情况下,Broken水平条形图非常合适,因为它们可以同时绘制最大和最小范围。 python模块matplotlib.broken_barh()用于绘制Broken水平条形图。...Table Demo Matplotlib表格功能也是可以在图中显示表格。当我们希望以条形形式快速查看表格值时,这特别方便。表格可以放置在图表顶部,底部或侧面。

    91230

    娱乐圈排行榜动态条形图绘制

    我是爬虫爬下来数据,如果不想爬虫可直接到公众号回复"娱乐圈排行榜条形图",即可获取数据。...pandas as pd from pandas import concat import os os.chdir(r"F:\微信公众号\Python\21.娱乐圈排行榜\2.绘制动图条形图")...是添加文字内容,xy是箭头位置,xytext是文字位置,bbox是添加边框; for x, y:添加人名; 得到结果: ?...,即关闭交互模式 plt.show() # 显示图片,防止闪退 代码解析: plt.clf():清除之前画图,避免在一张图上画两个图; plt.pause:每隔0.4秒展示一张图。...若想获取文中所有可直接执行代码和数据,可在公众号回复"娱乐圈排行榜条形图",即可免费获取。如对代码有疑问,可以到公众号私信我。

    1.1K30

    高效使用 Python 可视化工具 Matplotlib

    入门 本文其余部分将作为一个入门教程,介绍如何在pandas中进行基本可视化创建,并使用matplotlib自定义最常用项目。一旦你了解了基本过程,进一步定制化创建就相对比较简单。...定制化绘图 假设你对这个绘图要点很满意,下一步就是定制它。使用pandas绘图功能定制(添加标题和标签)非常简单。但是,你可能会发现自己需求在某种程度上超越该功能。...我们得益于pandas快速绘图,获得了访问matplotlib所有权限。我们现在可以做什么呢?用一个例子来展示。另外,通过命名约定,可以非常简单地把别人解决方案改成适合自己独特需求方案。...幸运是,我们也有能力在图上添加多个图形,并使用各种选项保存整个图像。 如果决定要把两幅图放在同一个图像上,我们应对如何做到这一点有基本了解。 首先,创建图形,然后创建坐标轴,然后将其全部绘制在一起。...还指定了分辨率dpi和bbox_inches =“tight”来尽量减少多余空格。 结论 希望这个过程有助于你了解如何在日常数据分析更有效地使用matplotlib。

    2.4K20
    领券