虽然 PySpark 从数据中推断出模式,但有时我们可能需要定义自己的列名和数据类型,本文解释了如何定义简单、嵌套和复杂的模式。...PySpark StructType 和 StructField 类用于以编程方式指定 DataFrame 的schema并创建复杂的列,如嵌套结构、数组和映射列。...类来定义列,包括列名(String)、列类型(DataType)、可空列(Boolean)和元数据(MetaData)。...StructType 是 StructField 的集合,用于定义列名、数据类型和是否可为空的标志。...如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点
导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...03 DataFrame DataFrame是PySpark中核心的数据抽象和定义,理解DataFrame的最佳方式是从以下2个方面: 是面向二维关系表而设计的数据结构,所以SQL中的功能在这里均有所体现...select:查看和切片 这是DataFrame中最为常用的功能之一,用法与SQL中的select关键字类似,可用于提取其中一列或多列,也可经过简单变换后提取。...,select还支持类似SQL中"*"提取所有列,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过
同一行可以包含多种类型的数据格式(异质性),而同一列只能是同种类型的数据(同质性)。数据框通常除了数据本身还包含定义数据的元数据;比如,列和行的名字。...还可以通过已有的RDD或任何其它数据库创建数据,如Hive或Cassandra。它还可以从HDFS或本地文件系统中加载数据。...这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3. 列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4....描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5....执行SQL查询 我们还可以直接将SQL查询语句传递给数据框,为此我们需要通过使用registerTempTable方法从数据框上创建一张表,然后再使用sqlContext.sql()来传递SQL查询语句
在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...header=True 表示文件的第一行是列名,inferSchema=True 表示自动推断数据类型。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。
1、下载Anaconda并安装PySpark 通过这个链接,你可以下载Anaconda。你可以在Windows,macOS和Linux操作系统以及64位/32位图形安装程序类型间选择。...第一步:从你的电脑打开“Anaconda Prompt”终端。 第二步:在Anaconda Prompt终端中输入“conda install pyspark”并回车来安装PySpark包。...5.5、“substring”操作 Substring的功能是将具体索引中间的文本提取出来。在接下来的例子中,文本从索引号(1,3),(3,6)和(1,6)间被提取出来。...“URL” 6.3、删除列 列的删除可通过两种方式实现:在drop()函数中添加一个组列名,或在drop函数中指出具体的列。...任何像数据框架一样可以加载进入我们代码的数据源类型都可以被轻易转换和保存在其他类型文件中,包括.parquet和.json。
本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...注意: 开箱即用的 PySpark API 支持将 JSON 文件和更多文件格式读取到 PySpark DataFrame 中。...如果事先知道文件的架构并且不想使用inferSchema选项来指定列名和类型,请使用指定的自定义列名schema并使用schema选项键入。...使用 PySpark StructType 类创建自定义 Schema,下面我们启动这个类并使用添加方法通过提供列名、数据类型和可为空的选项向其添加列。...SQL 读取 JSON 文件 PySpark SQL 还提供了一种读取 JSON 文件的方法,方法是使用 spark.sqlContext.sql(“将 JSON 加载到临时视图”) 直接从读取文件创建临时视图
在 PySpark 中,可以使用SparkSession来执行 SQL 查询。...以下是一个示例代码,展示了如何在 PySpark 中进行简单的 SQL 查询:from pyspark.sql import SparkSession# 创建 SparkSessionspark = SparkSession.builder.appName...header=True 表示文件的第一行是列名,inferSchema=True 表示自动推断数据类型。...注册临时视图:使用 df.createOrReplaceTempView 方法将 DataFrame 注册为临时视图,这样就可以在 SQL 查询中引用这个视图。...执行 SQL 查询:使用 spark.sql 方法执行 SQL 查询。在这个示例中,查询 table_name 视图中 column_name 列值大于 100 的所有记录。
本文中,云朵君将和大家一起学习如何将 CSV 文件、多个 CSV 文件和本地文件夹中的所有文件读取到 PySpark DataFrame 中,使用多个选项来更改默认行为并使用不同的保存选项将 CSV 文件写回...注意: 开箱即用的 PySpark 支持将 CSV、JSON 和更多文件格式的文件读取到 PySpark DataFrame 中。..."中,用于第一列和"_c1"第二列,依此类推。...我将在后面学习如何从标题记录中读取 schema (inferschema) 并根据数据派生inferschema列类型。...使用用户自定义架构读取 CSV 文件 如果事先知道文件的架构并且不想使用inferSchema选项来指定列名和类型,请使用指定的自定义列名schema并使用schema选项键入。
图解数据分析:从入门到精通系列教程图解大数据技术:从入门到精通系列教程图解机器学习算法:从入门到精通系列教程数据科学工具库速查表 | Spark RDD 速查表数据科学工具库速查表 | Spark SQL...可以通过如下代码来检查数据类型:df.dtypes# 查看数据类型 df.printSchema() 读写文件Pandas 和 PySpark 中的读写文件方式非常相似。...', 'salary']df[columns_subset].head()df.loc[:, columns_subset].head() PySpark在 PySpark 中,我们需要使用带有列名列表的...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...: 'count', 'salary':'max', 'age':'mean'}).reset_index()图片在 PySpark 中,列名会在结果dataframe中被重命名,如下所示:图片要恢复列名
本文中,云朵君将和大家一起学习如何从 PySpark DataFrame 编写 Parquet 文件并将 Parquet 文件读取到 DataFrame 并创建视图/表来执行 SQL 查询。...Pyspark SQL 提供了将 Parquet 文件读入 DataFrame 和将 DataFrame 写入 Parquet 文件,DataFrameReader和DataFrameWriter对方法...下面是关于如何在 PySpark 中写入和读取 Parquet 文件的简单说明,我将在后面的部分中详细解释。...Parquet 能够支持高级嵌套数据结构,并支持高效的压缩选项和编码方案。 Pyspark SQL 支持读取和写入 Parquet 文件,自动捕获原始数据的模式,它还平均减少了 75% 的数据存储。...当将DataFrame写入parquet文件时,它会自动保留列名及其数据类型。Pyspark创建的每个分区文件都具有 .parquet 文件扩展名。
3.complex type 如果只是在Spark数据帧中使用简单的数据类型,一切都工作得很好,甚至如果激活了Arrow,一切都会非常快,但如何涉及复杂的数据类型,如MAP,ARRAY和STRUCT。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...除了转换后的数据帧外,它还返回一个带有列名及其转换后的原始数据类型的字典。 complex_dtypes_from_json使用该信息将这些列精确地转换回它们的原始类型。...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。
**查询总行数:** 取别名 **查询某列为null的行:** **输出list类型,list中每个元素是Row类:** 查询概况 去重set操作 随机抽样 --- 1.2 列元素操作 --- **获取...functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]列的所有值:** **修改列的类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...(“xx”, 1) 修改列的类型(类型投射): df = df.withColumn("year2", df["year1"].cast("Int")) 修改列名 jdbcDF.withColumnRenamed...- 9、读写csv -------- 在Python中,我们也可以使用SQLContext类中 load/save函数来读取和保存CSV文件: from pyspark.sql import SQLContext
本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...如果我们关注数据集,它也包含' | '列名。 让我们看看如何进行下一步: 步骤1。...使用spark的Read .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件中读取数据并将数据放入内存后我们发现,最后一列数据在哪里,列年龄必须有一个整数数据类型,但是我们看到了一些其他的东西。这不是我们所期望的。一团糟,完全不匹配,不是吗?...接下来,连接列“fname”和“lname”: from pyspark.sql.functions import concat, col, lit df1=df_new.withColumn(‘fullname
要将这些数据加载到Spark DataFrame中,我们只需告诉Spark每个字段的类型。...我们使用Spark Spark项目之外的spark-csv包来解释CSV格式的数据: from pyspark.sql import SQLContext from pyspark.sql.types...我们将使用MLlib来训练和评估一个可以预测用户是否可能流失的随机森林模型。 监督机器学习模型的开发和评估的广泛流程如下所示: 流程从数据集开始,数据集由可能具有多种类型的列组成。...在我们的例子中,数据集是churn_data,这是我们在上面的部分中创建的。然后我们对这些数据进行特征提取,将其转换为一组特征向量和标签。...特征提取是指我们可能会关注从输入数据中产生特征向量和标签的一系列可能的转换。在我们的例子中,我们会将输入数据中用字符串表示的类型变量,如intl_plan转化为数字,并index(索引)它们。
# ['color', 'length'] # 查看行数,和pandas不一样 color_df.count() # dataframe列名重命名 # pandas df=df.rename(columns...*columns_to_drop) #增加一列 from pyspark.sql.functions import lit color_df.withColumn('newCol', lit(0))....) 9、空值判断 有两种空值判断,一种是数值类型是nan,另一种是普通的None # 类似 pandas.isnull from pyspark.sql.functions import isnull...# 数据转换,可以理解成列与列的运算 # 注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions...df1.withColumn('Initial', df1.LastName.substr(1,1)).show() # 4.顺便增加一新列 from pyspark.sql.functions import
因此,熟练常用技术是良好分析的保障和基础。 笔者认为熟练记忆数据分析各个环节的一到两个技术点,不仅能提高分析效率,而且将精力从技术中释放出来,更快捷高效的完成逻辑与沟通部分。...本文基于数据分析的基本流程,整理了SQL、pandas、pyspark、EXCEL(本文暂不涉及数据建模、分类模拟等算法思路)在分析流程中的组合应用,希望对大家有所助益。...7) converters={'a': fun, 'b': fun}:对a和b两列做如上fun函数的处理。...2.4、使用pyspark做数据导出: from pyspark.sql import SparkSession spark = SparkSession\ .builder\...中的导出结构相对比较统一,即write函数,可以导出为csv、text和导出到hive库中,可以添加format格式和追加模式:append 为追加;overwrite为覆盖。
Spark DataFrame可看作带有模式(Schema)的RDD,而Schema则是由结构化数据类型(如字符串、整型、浮点型等)和字段名组成。...4 深入理解 Dataset是一个分布式数据集,提供RDD强类型和使用强大的lambda函数的能力,并结合了Spark SQL优化的执行引擎。...Dataset可以从JVM对象构建而成,并通过函数式转换(如map、flatMap、filter等)进行操作。...在Scala和Java中,DataFrame由一组Rows组成的Dataset表示: Scala API中,DataFrame只是Dataset[Row]的类型别名 Java API中,用户需要使用Dataset...通过调用该实例的方法,可以将各种Scala数据类型(如case class、元组等)与Spark SQL中的数据类型(如Row、DataFrame、Dataset等)之间进行转换,从而方便地进行数据操作和查询
它将运行中的应用程序的状态不时地保存在任何可靠的存储器(如HDFS)上。但是,它比缓存速度慢,灵活性低。 ❞ 当我们有流数据时,我们可以使用检查点。转换结果取决于以前的转换结果,需要保留才能使用它。...首先,我们需要定义CSV文件的模式,否则,Spark将把每列的数据类型视为字符串。...我们读取数据并检查: # 导入所需库 from pyspark import SparkContext from pyspark.sql.session import SparkSession from...pyspark.streaming import StreamingContext import pyspark.sql.types as tp from pyspark.ml import Pipeline...请记住,我们的重点不是建立一个非常精确的分类模型,而是看看如何在预测模型中获得流数据的结果。
转换成UTF-8编码,或者从UTF-8转换到GBK。...2.3 pyspark dataframe 新增一列并赋值 http://spark.apache.org/docs/latest/api/python/pyspark.sql.html?...highlight=functions#module-pyspark.sql.functions 统一值 from pyspark.sql import functions df = df.withColumn...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...和pandas 都提供了类似sql 中的groupby 以及distinct 等操作的api,使用起来也大同小异,下面是对一些样本数据按照姓名,性别进行聚合操作的代码实例 pyspark sdf.groupBy
在这个过程中,MapReduce只能把中间结果存储到磁盘中,然后在下一次计算的时候重新从磁盘读取数据;对于迭代频发的算法,这是制约其性能的瓶颈。...(Pipeline)API,具体如下: (1)算法工具:常用的学习算法,如分类、回归、聚类和协同过滤; (2)特征化工具:特征提取、转化、降维和选择工具; (3)流水线(Pipeline):用于构建...二、机器学习流水线 (一)机器学习流水线概念 在介绍流水线之前,先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型。...(二)流水线工作过程 要构建一个Pipeline流水线,首先需要定义Pipeline中的各个流水线阶段PipelineStage(包括转换器和评估器),比如指标提取和转换模型训练等。...创建一个MulticlassClassificationEvaluator实例,用setter方法把预测分类的列名和真实分类的列名进行设置,然后计算预测准确率。
领取专属 10元无门槛券
手把手带您无忧上云