最近不是在学习plotly嘛,为了方便理解,我们这里取excel绘图中常见的16种图表为例,分两期演示这些基础图表怎么用plotly进行绘制!
收集数据后,需要对其进行解释和分析,以深入了解数据所蕴含的深意。而这个含义可以是关于模式、趋势或变量之间的关系。
数据可视化作为数据分析最直接的结果呈现方式,了解其制作方式和应用场景是很有必要的,本文来了解一下各个图标的应用场景及代码实现。
pandas库是Python数据分析的核心库 它不仅可以加载和转换数据,还可以做更多的事情:它还可以可视化 pandas绘图API简单易用,是pandas流行的重要原因之一
做数据分析和做科普是类似的,科普的意义在于将晦涩难懂的科学知识,以让大众更易接受和理解的方式呈现。而数据分析中的数据可视化做的正是如此关键中的关键,即是将数据的特点以一种显而易见的形式进行呈现。但也不必说的那么高级,我们可以说数据可视化就是“画图”。
作者主页:海拥 作者简介:CSDN全栈领域优质创作者、HDZ核心组成员、蝉联C站周榜前十
数据可视化是数据分析和探索中至关重要的一部分,能够帮助我们更深入地理解数据集中的潜在模式、趋势和关系。Plotly是一个功能强大、用途广泛的Python库,提供了多种工具用于创建交互式、视觉上引人入胜的图表。在本文中,我们将深入探索Plotly的世界,通过高级Python代码示例来探索其特性和功能。
在谈及数据可视化的时候,我们通常都会使用到matplotlylib,pyecharts这些可视化的手段。但是,今天我主要来介绍Plotly这款可视化的库。大家参考开源项目地址:
数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。Python作为数据分析中最流行的编程语言之一,有几个库可以创建精美而复杂的数据可视化,允许分析人员和统计人员通过方便地在一处提供界面和数据可视化工具而轻松地根据其规范创建可视数据模型!
数据可视化是一种将密集复杂数据信息以视觉图形的形式呈现。设计出来的视觉效果简化了数据,让用户分析研究比较数据变得容易以及可以更好地向领导或者团队讲述“故事”——可以帮助用户更好地做出决策。
关于pandas的可视化的用法还有很多,这里不再拓展,但还是建议使用matplotlib,seaborn等库完成绘图。
点阵图表 (Dot Matrix Chart) 以点为单位显示离散数据,每种颜色的点表示一个特定类别,并以矩阵形式组合在一起。
Matplotlib 是 Python 的一个绘图库,可以绘制出高质量的折线图、散点图、柱状图、条形图等等。它也是许多其他可视化库的基础。
今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。
本文将探讨三种用Python可视化数据的不同方法。以可视化《2019年世界幸福报告》的数据为例,本文用Gapminder和Wikipedia的信息丰富了《世界幸福报告》数据,以探索新的数据关系和可视化方法。
数据可视化是数据科学家工作的重要组成部分。在项目的早期阶段,你通常会进行探索性数据分析(EDA),以获得对数据的一些见解。创建可视化确实有助于使事情更清晰和更容易理解,特别是对于更大的、高维的数据集。在项目接近尾声时,以一种清晰、简洁和引人注目的方式展示最终结果是非常重要的,这样你的受众(通常是非技术客户)就更加容易理解。
有的图表用来反映当前时间的指标状态,比如本周店铺业绩排名条形图,有的图表用来反映时间趋势,比如业绩每周变化折线图。有没有图表既能反映当前的状态,又能体现趋势?
是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列。——维基百科
conda: data science package & environment manager
Pandas 是一种非常流行的数据分析工具,同时它还为数据可视化提供了很好的选择。
Excel提供了相当广泛的功能来创建图形,即Excel所谓的 图表。您可以通过选择插入>图表来访问Excel的图表功能 。我们将在此处描述如何创建条形图和折线图。其他类型的图表以类似的方式创建。创建图表后,可以访问三个新的功能区,分别是 Design, Layout 和 Format。这些用于完善创建的图表。
常听到一句话,“能用图描述的就不用表,能用表就不用文字”。这句话也直接的表明了:在认知上,大家对于图形的敏感度远比文字高。
作为Python的新一代数据可视化绘图库,和matplotlib等传统绘图库相比,plotly具有以下优点:
Severino Ribecca 是一位平面设计师,也是数据可视化的爱好者,他在自己的网站上收录了 60 种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具。
数据可视化的爱好者Severino Ribecca,他在自己的网站上收录了 60 种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具。
Plotly 是一个用于创建交互式数据可视化的 Python 库,它允许你轻松地生成各种类型的图表和图形,包括折线图、散点图、柱状图、饼图、热力图、3D 图等。
在本文中,我们将探讨如何在 Python 中使用 Plotly 创建人口金字塔。Plotly是一个强大的可视化库,允许我们在Python中创建交互式和动态绘图。
在数据科学和数据分析领域,可视化是一种强大的工具,可以帮助我们理解数据、发现模式并传达见解。传统的静态图表在展示数据方面有一定局限性,而交互式数据可视化则为我们提供了更丰富、更具互动性的体验。在这篇文章中,我们将探索 Plotly 这一强大的 Python 可视化库,了解其如何实现交互式数据可视化,并探讨其在数据分析中的新前景。
Dash是基于Flask的Python可视化工具,严格说来由三个部分组成,首先是Flask提供了标准web环境,再次是plotly这个图表可视化工具,最后是与dash相配套的html、图表等交互式组件。本人也陆续试过pyechart,但就集成性和可视化而言,与dash还是有一定差距。
数据分析离不开数据可视化,我们最常用的就是pandas,matplotlib,pyecharts当然还有Tableau,看到一篇文章介绍plotly制图后我也跃跃欲试,查看了相关资料开始尝试用它制图。
在上一篇博客中提到了【数据可视化】数据可视化入门前的了解,这次来看看Echarts最常用图表有哪些,和作用是什么?
很多算法工程师在完成数据分析、模型训练或者项目总结的时候,往往只能通过ppt汇报,添加数据图表、截图模型实验结果等。如果想提供一个前端演示demo,通常可以搭建flask服务,但是flask需要学习很多前端知识,如css、html等,这又是一个深之又深的坑。那有没有什么工具能够跳过这些模块,直接提供一个可用的前端页面呢?答案是肯定的,今天给大家推荐一个轻量化、简单好用、快速上手的streamlit。
提到用python进行数据可视化,那么大多数人选择都是matplotlib,但是生成的图表不能进行交互操作,比如时间轴拖动、交互式图例等,那么本文将对pyecharts进行详细讲解。
此节内容与上一节内容类似,可以看做是并列关系。本节以实例的方式来为大家讲解各种图形的应用,并介绍一些新的图形。
可视化是用来探索性数据分析最强大的工具之一。Pandas库包含基本的绘图功能,可以让你创建各种绘图。Pandas中的绘图是在matplotlib之上构建的,如果你很熟悉matplotlib你会惊奇地发现他们的绘图风格是一样的。
导读:绘图是数据分析工作中的重要一环,是探索过程的一部分。Matplotlib是当前用于数据可视化的最流行的Python包之一,本文主要介绍数据可视化分析工具:Matplotlib。
绘图是数据分析工作中的重要一环,是探索过程的一部分。Matplotlib是当前用于数据可视化的最流行的Python包之一,本文主要介绍数据可视化分析工具:Matplotlib。
选择错误的图表类型或默认使用最常见的数据可视化类型可能会混淆用户或导致数据误解。相同的数据集可以以多种方式表示,具体取决于用户希望看到的内容。始终从审查您的数据集和用户访谈开始。
当使用Python可视化数据时,大多数数据科学家会选择使用著名的Matplotlib、Seaborn或Bokeh。Matplotlib 以其强大的功能而闻名,Seaborn 以其易用性而闻名,Bokeh 以其交互性而闻名,Plotly 以其协作而闻名,其实Pygal也很惊艳,Pygal允许用户创建漂亮的交互式图,这些图可以以最佳的分辨率转换成svg,以便使用Flask或Django打印或显示在网页上。
译者丨Matrix链接丨https://modus.medium.com/https-medium-com-lucy-todd-how-to-master-data-visualization-7b82217a665a 如果你已有一组或两组可靠的统计,并准备分享给你的听众。写出来?画张图?用表格?为了确保你的听众理解信息,统计的呈现必须要可信和精确。 然而可视化类型的选择,既不是纯粹美学也不是完全个人化。一个不合适的方案,受众可能会觉得乏味或者费解,甚至兼而有之。更有甚之, 不精确的数据可视化会造成你和你
数据可视化是数据展示的常见方式,所谓一图抵千言,好的图表能高效传递信息,让观众一目了然,差的图表往往会不知所云。
如果你已有一组或两组可靠的统计,并准备分享给你的听众。写出来?画张图?用表格?为了确保你的听众理解信息,统计的呈现必须要可信和精确。
可视化图表千千万,很多小伙伴在选择过程中就容易犯选择困难症。即使选择了一款图表,后期也可能发现可视化图表既无法准确表达自己的意图,也没能向阅读者传达出应有的信息,可视化图形让人困惑或看不懂。
这篇博客将介绍python中可视化比较棒的3D绘图包,pyecharts、matplotlib、openpyxl。基本的条形图、散点图、饼图、地图都有比较成熟的支持。
领取专属 10元无门槛券
手把手带您无忧上云