Matplotlib 与用Python绘图正好相反。最初,我用matplotlib创建的几乎每个图表看起来都很过时。...小提琴图在绘制大洲与生活阶梯的关系图时,用人均GDP的平均值对数据进行分组。人均GDP越高,幸福指数就越高 配对图 Seaborn配对图是在一个大网格中绘制双变量散点图的所有组合。...Seaborn散点图网格中,所有选定的变量都分散在网格的下半部分和上半部分,对角线包含Kde图。...Plotly散点图,绘制人均 GDP与生活阶梯的关系,其中颜色表示大洲和人口的大小 散点图 — 穿越时间的漫步 fig = px.scatter( data=data, x="Log...结束语 本文展示了如何成为一名真正的Python可视化专家、如何在快速探索时更有效率、以及如何在董事会会议前创建更漂亮的图表、还有如何创建交互式绘图图表,尤其是在绘制地理空间数据时,十分有用。
参考链接: Python | 使用XlsxWriter模块在Excel工作表中绘制饼图 导读:对数据进行质量分析以后,接下来可通过绘制图表、计算某些特征量等手段进行数据的特征分析。 ...绘制频率分布直方表 根据分组区间得到如表3-4所示的频率分布表。 其中,第1列将数据所在的范围分成若干组段,其中第1个组段要包括最小值,最后一个组段要包括最大值。...绘制频率分布直方图 若以2014年第二季度“捞起生鱼片”这道菜每天的销售额组段为横轴,以各组段的频率密度(频率与组距之比)为纵轴,表3-4中的数据可绘制成频率分布直方图,如代码清单3-3所示。 ...▲图3-3 季度销售额频率分布直方图 02 定性数据的分布分析 对于定性变量,常常根据变量的分类类型来分组,可以采用饼图和条形图来描述定性变量的分布,如代码清单3-4所示。 ...本文摘编自《Python数据分析与挖掘实战》(第2版),经出版方授权发布。
绘制频率分布直方表 根据分组区间得到如表3-4所示的频率分布表。 其中,第1列将数据所在的范围分成若干组段,其中第1个组段要包括最小值,最后一个组段要包括最大值。...绘制频率分布直方图 若以2014年第二季度“捞起生鱼片”这道菜每天的销售额组段为横轴,以各组段的频率密度(频率与组距之比)为纵轴,表3-4中的数据可绘制成频率分布直方图,如代码清单3-3所示。...▲图3-3 季度销售额频率分布直方图 02 定性数据的分布分析 对于定性变量,常常根据变量的分类类型来分组,可以采用饼图和条形图来描述定性变量的分布,如代码清单3-4所示。...有10余年大数据挖掘与分析经验,擅长Python、R、Hadoop、Matlab等技术实现的数据挖掘与分析,对机器学习等AI技术驱动的数据分析也有深入研究。...本文摘编自《Python数据分析与挖掘实战》(第2版),经出版方授权发布。
下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。...针对每列绘制线性回归线或者,可以在其每列中显示每个组的最佳拟合线。可以通过在 sns.lmplot() 中设置 col=groupingcolumn 参数来实现,如下: 4....条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。...您可以在下面看到一些基于每天不同时间订单的示例。另一个关于 45 天持续到达的订单数量的例子。 在该方法中,订单数量的平均值由白线表示。并且计算 95% 置信区间并围绕均值绘制。 43....安德鲁斯曲线(Andrews Curve) 安德鲁斯曲线有助于可视化是否存在基于给定分组的数字特征的固有分组。如果要素(数据集中的列)无法区分组(cyl),那么这些线将不会很好地隔离,如下所示。
下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。 ?...针对每列绘制线性回归线或者,可以在其每列中显示每个组的最佳拟合线。可以通过在 sns.lmplot() 中设置 col=groupingcolumn 参数来实现,如下: ? 4....条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 ?...您可以在下面看到一些基于每天不同时间订单的示例。另一个关于 45 天持续到达的订单数量的例子。 在该方法中,订单数量的平均值由白线表示。并且计算 95% 置信区间并围绕均值绘制。 ? ? 43....安德鲁斯曲线(Andrews Curve) 安德鲁斯曲线有助于可视化是否存在基于给定分组的数字特征的固有分组。如果要素(数据集中的列)无法区分组(cyl),那么这些线将不会很好地隔离,如下所示。 ?
你还可以通过对组进行简单的颜色编码来查看不同组数据的这种关系,如下面的第一个图所示。想要可视化三个变量之间的关系吗?完全没有问题!只需使用另一个参数,如点大小,对第三个变量进行编码,如下面的图2所示。...直线图非常适合这种情况,因为它们基本上可以快速总结为两个变量(百分比和时间)的协方差。同样,我们也可以使用颜色编码分组。从我们的第一个图表开始,折线图就属于“超时”类别。 ?...我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...通过使用颜色编码,我们可以很容易地看到和理解哪些服务器每天的工作量最大,以及负载与其他服务器的负载相比如何。其代码遵循与分组条形图相同的样式。...Matplotlib函数' boxplot() '为' ydata '的每一列或序列' ydata '中的每个向量绘制一个箱线图,因此,“xdata”中的每个值对应于“y_data”中的列/向量。
np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat()。...下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从下面的sns.lmplot()调用中删除hue ='cyl'参数。...针对每列绘制线性回归线 或者,可以在其每列中显示每个组的最佳拟合线。...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。颜色名称存储在下面代码中的all_colors中。...您可以在下面看到一些基于每天不同时间订单的示例。另一个关于45天持续到达的订单数量的例子。 在该方法中,订单数量的平均值由白线表示。并且计算95%置信区间并围绕均值绘制。
使用Pandas进行时间重采样 考虑将重采样为 groupby() ,在此我们可以基于任何列进行分组,然后应用聚合函数来检查结果。...我们还可以通过 在.plot顶部调用.bar来绘制每年开始的平均值 的 条形图。 ? ? 类似地,我们可以绘制月初的滚动平均值和正常平均值,如下所示。 ?...请注意,滚动平均值中缺少前30天,并且由于它是滚动平均值,与重采样相比,它非常平滑。 同样,您可以根据自己的选择绘制特定的日期。假设我要绘制从1995年到2005年的每年年初的最大值。...我可以按以下方式进行绘制。 ? 在这里,我们指定了 xlim 和 ylim。看看我如何在xlim中添加日期。主要模式是 xlim = ['开始日期','结束日期']。 ?...希望您现在已经了解 在Pandas中正确加载时间序列数据集 时间序列数据索引 使用Pandas进行时间重采样 滚动时间序列 使用Pandas绘制时间序列数据
在前面的章节中,我们看到了一个散点图的例子,我们看了两个经典小说的时间段和角色数量。 Table的scatter方法绘制一个散点图,由表格的每一行组成。...每个条形的长度与相应类别的频率成正比。 我们使用横条绘制条形图,因为这样更容易标注条形图。 所以Table的方法称为barh。 它有两个参数:第一个是类别的列标签,第二个是频率的列标签。...但是这个条形图还是有点问题。 1921 年和 1937 年的条形与 1937 年和 1939 年的条形相距甚远。条形图并没有显示出,200 部电影中没有一部是在 1922 年到 1936 年间发布的。...重叠的图表 在这一章中,我们学习了如何通过绘制图表来显示数据。 这种可视化的常见用法是比较两个数据集。...Python 绘制了两个散点图:这个变量和另外两个之间的关系,每个关系一个。 金色和蓝色的散点图向上倾斜,并显示出儿子的高度和父母的高度之间的正相关。
我们将使用Altair库,它是Python的统计可视化库。 如果你喜欢其中一个用于数据可视化任务的库的话,我以前曾用Seaborn和ggplot2写过类似的文章。...数据帧由100行和5列组成。它包含datetime、categorical和numerical值。 1.折线图 折线图显示了两个变量之间的关系。其中之一通常是时间。...A中的值范围小于其他两个类别。框内的白线表示中值。 5.条形图 条形图可用于可视化离散变量。每个类别都用一个大小与该类别的值成比例的条表示。...例如,我们可以使用条形图来可视化按week分组的“val3”列。我们先用pandas库计算。...第一行从date列中提取周。第二行将“val3”列按周分组并计算总和。 我们现在可以创建条形图。
我们还可以映射不同参数的颜色和宽度,例如速度、时间等。 条形图 我们可以使用bar()函数制作具有很多自定义功能的条形图。...假设在环境变量中设置了Python的路径,则只需使用pip命令安装matplotlib软件包即可上手。 使用以下命令: $ pip安装matplotlib ? 在我的系统中,该软件包已经安装。...使用zip()函数,两个数组合并在一起:xpoints []的第一个元素与color []数组的第一个元素。比如,第一行=绿色,第二行=青色,依此类推。...这两个数组都使用zip()函数合并在一起,遍历最终数组,并且用axhline()绘制线,如下面的输出所示: ? ? 保存图形 ? 绘制图形后,如何保存输出图形?...首先是定义plot的位置。在第一个子图中,1,2,1表示我们有1行2列,当前图将在索引1处绘制。类似地,1,2,2告诉我们有1行2列,但是这将图的时间定为索引2。 下一步是创建数组以在图中绘制整数点。
条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...多组条形图 多组条形图也称为「分组条形图」或「复式条形图」,是条形图的变种。 多组条形图通常用来将分组变量或类别与其他数据组进行比较,也可用来比较迷你直方图,每组内的每个条形将表示变量的显著间隔。...图表中可加入直线或曲线来辅助分析,并显示当所有数据点凝聚成单行时的模样,通常称为「最佳拟合线」或「趋势线」。 如您有一对数值数据,可使用散点图来查看其中一个变量是否在影响着另一个变量。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。
编者按:Python学习和实践数据科学,Python和Python库能够方便地完成数据获取,数据探索,数据处理,数据建模和模型应用与部署的工作,对于数据科学工作中各个环节都有合适的解决方案。...对于新手,建议按着本教程学习与实践。 我在SAS工作了5年多之后,决定走出舒适区。作为一名数据科学家,我在寻找其他好用的工具,幸运的是,没过多久,我发现了Python。 一直以来,我喜欢敲代码。...事实证明,有了Python,敲代码变得更为容易。 我花了一周时间来学习Python的基础知识,从那时起,我不仅深入钻研Python,而且还帮助许多其他人学习这门语言。...1.两个矩阵相乘 2.找到二次方程的根 3.绘制条形图和直方图 4.网页访问 如果你尝试从头开始编写代码,那将成为一场恶梦,你将在Python上不会坚持超过2天!...Series和DataFrames构成了Pandas在Python中的核心数据模型。数据集首先被读入Dataframes,然后各种操作(例如分组、聚合等)可以非常容易地应用于其列。
常用的可视化图表 我们常用的图表其实也有很多,比如说文本表格,条形图,饼图等等。下面我就来简单介绍10种常见的图表 散点图 散点图一般是两个变量的二维图表,很适合展示两个变量之间的关系。...条形图 条形图可以查看数据中不同类别之间的分布请求 盒式图 是由五个数值组成:最大值(max)、最小值(min)、中位数(median)和上下四分位数(Q3,Q1),可以帮助我们分析数据的差异性、离散程度和异常值等信息...,把可视化图表分成如下几类 联系 查看多个变量之间的关系,例如:散点图,雷达图 比较 比较数据间各类别的关系,例如:条形图 趋势 展示数据随时间的变化趋势,例如:折线图 构成 各部分占总体的百分比,例如...十大图表实例 下面我们就来逐一完成上面的十个图表,看看 Python 带给你的视觉体验。..., style=None, size=None, data=None) x,y:传入的数据间 data 的列的名字 hue:按照列名分组,不同组展示不同颜色 style:按照列名分组,不同分组使用不同的
作者 | Fabian Bosler 来源 | Medium 在今天的文章中,将研究使用Python绘制数据的三种不同方式。将通过利用《 2019年世界幸福报告》中的数据来做到这一点。...仅了解这两个数字,就可以简单地得出特定结果的可能性。人们立即知道大部分结果将在哪里。它提供了一个参考框架,可以快速将轶事与有统计意义的事件区分开来,而无需进行过于复杂的计算。...看看如何在一个图表中为单个变量或多个变量生成分布。...,使用人均GDP GDP来对数据进行分组。...在下面的示例中,将平均值和标准偏差相加,并在该平均值处绘制一条垂直线(下面的代码)。
数据可视化 绘制此类可视化作品的静态图表较为简单,matplotlib的barh()方法即可绘制水平条形图(ps:为了更加接近于原始图表即条形图边角圆滑,但目前还没找到matplotlib的设置方法,...解释:红方框中的为python列表生成式,此方法高效简单,在数据处理过程中非常有用,希望大家可以掌握。...而 colors_region[region_color_dic[x]]操作则根据上述定义的两个字典实现颜色赋值,即先根据‘name’中的国家名在字典region_color_dic选择对应的’region...首先使用enumerate(zip())实现同时遍历多个对象,红色方框内的与上面知识点类似,绿色方框内为数字格式化操作,也可采用以下方式: '{:,.0f}k'.format(value) 以上即为绘制过程中需要注意的点...总结 Bar Chart Race 图表的Matplotlib制作过程总体而言不难,此篇推文的可取之处有两点:python字典和列表表达式的灵活应用;Matplotlib多类别条形图图例的添加,希望这两点可以在大家的可视化绘制中有所帮助
散点图 由于可以直接看到原始数据的分布,散点图对于展示两个变量之间的关系非常有用。你还可以通过用颜色将数据分组来观察不同组数据之间的关系,如下图所示。...直方图案例 下面展示了 Matplotlib 中绘制直方图的代码。这里有两个步骤需要注意,首先,n_bins 参数控制直方图的箱体数量或离散化程度。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。 ?...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。 ?
条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...多组条形图 ? 多组条形图也称为「分组条形图」或「复式条形图」,是条形图的变种。...图表中可加入直线或曲线来辅助分析,并显示当所有数据点凝聚成单行时的模样,通常称为「最佳拟合线」或「趋势线」。 如您有一对数值数据,可使用散点图来查看其中一个变量是否在影响着另一个变量。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。
导读:绘图是数据分析工作中的重要一环,是探索过程的一部分。Matplotlib是当前用于数据可视化的最流行的Python包之一,本文主要介绍数据可视化分析工具:Matplotlib。...散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。在广告数据分析中,我们通常会根据散点图来分析两个变量之间的数据分布关系。散点图的主要参数及其说明如下。...▲图2 条形图 03 折线图 折线图是用直线连接排列在工作表的列或行中的数据点而绘制成的图形。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示相等时间间隔下数据的趋势。...:直方图的边界色 下面我们以Kaggle经典比赛案例泰坦尼克号数据集为例,绘制乘客年龄的频数直方图,查看各年龄段乘客的年龄分布情况,如代码清单5所示,其可视化结果如图5所示。...本文摘编于《Python广告数据挖掘与分析实战》,经出版方授权发布。 ?
领取专属 10元无门槛券
手把手带您无忧上云