但是:fft是内存密集型的,因为它们需要额外的内存来存储转换后的矩阵。并且fft的计算成本很高,特别是在时域和频域之间来回转换数据时,涉及操作开销。 而卷积运算的一般矩阵乘法是这样的。...在隐式GEMM中,不是形成Transform矩阵,而是对每个列和行进行动态索引。最终的输出直接存储在输出张量对应的索引中。 由SMs(流多处理器)组成的GPU主要用于执行并行计算。...在上面的隐式GEMM中,每个矩阵乘法可以分成更小的矩阵乘法或块。然后每个块都由SMs同时处理,以加快过程。 有了上面的计算过程,还需要存储张量,下面我们看看张量是如何在GPU中存储的。...张量通常以跨行格式存储在GPU中,其中元素在内存布局中以非连续的方式存储。这种跨行存储方法提供了以各种模式(如NCHW或NHWC格式)排列张量的灵活性,优化了内存访问和计算效率。...下图中所示的给定张量,我们可以用NCHW和NHWC的行主格式表示它们,行主存储通过顺序存储每一行来安排内存中的张量元素。 NCHW 这里W是最动态的维度。
支持稀疏张量 MXNet v0.12增加了对稀疏张量的支持,来有效存储和计算大多数元素为0的张量。...我们熟悉的亚马逊推荐系统就是基于深度学习的推荐引擎,它包含了稀疏矩阵的乘法和加法,其中大多数元素都是0。 在稀疏矩阵中执行万亿次矩阵运算,与在密集矩阵之间执行的方式相同。...在密集矩阵的存储和计算效率不高,在默认密结构中存储和操作稀疏矩阵,会导致在不必要的处理上浪费内存。...MXNet v0.12支持两种主要的稀疏数据格式:压缩稀疏矩阵(CSR)和行稀疏(RSP)。 CSR格式被优化来表示矩阵中的大量列,其中每行只有几个非零元素。...这个版本支持大多数在CPU上常用运算符的稀疏操作,比如矩阵点乘积和元素级运算符。在未来版本中,将增加对更多运算符的稀疏支持。
注意: (1)multiply这个函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法,注意和tf.matmul区别。 ...b: 一个类型跟张量a相同的张量。 transpose_a: 如果为真, a则在进行乘法计算前进行转置。 transpose_b: 如果为真, b则在进行乘法计算前进行转置。 ...adjoint_a: 如果为真, a则在进行乘法计算前进行共轭和转置。 adjoint_b: 如果为真, b则在进行乘法计算前进行共轭和转置。 ...name: 操作的名字(可选参数) 返回值: 一个跟张量a和张量b类型一样的张量且最内部矩阵是a和b中的相应矩阵的乘积。 ...函数用法 loc函数:通过行索引 "Index" 中的具体值来取行数据(如取"Index"为"A"的行) iloc函数:通过行号来取行数据(如取第二行的数据) 1.
.TensorFlow表示一个稀疏张量,作为三个独立的稠密张量:indices,values和dense_shape.在Python中,三个张量被集合到一个SparseTensor类中,以方便使用。...具体来说,该稀疏张量SparseTensor(indices, values, dense_shape)包括以下组件,其中N和ndims分别是在SparseTensor中的值的数目和维度的数量:indices...:density_shape[N, ndims]的2-D int64张量,指定稀疏张量中包含非零值(元素为零索引)的元素的索引。...values:任何类型和dense_shape [N]的一维张量,它提供了indices中的每个元素的值。...与稀疏张量中的隐藏零元素相对应的输出位置将是零(即不会占用存储空间),而与密集张量的内容无关(即使它是+/- INF,且INF * 0 == NAN).限制:这个操作只向稀疏的一面播放密集的一面,而不是其他的方向
注意: (1)multiply这个函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法,注意和tf.matmul区别。 ...b: 一个类型跟张量a相同的张量。 transpose_a: 如果为真, a则在进行乘法计算前进行转置。 transpose_b: 如果为真, b则在进行乘法计算前进行转置。 ...adjoint_a: 如果为真, a则在进行乘法计算前进行共轭和转置。 adjoint_b: 如果为真, b则在进行乘法计算前进行共轭和转置。 ...name: 操作的名字(可选参数) 返回值: 一个跟张量a和张量b类型一样的张量且最内部矩阵是a和b中的相应矩阵的乘积。...注意: 在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。
A100每个SM有四个张量核,每个时钟总共提供1024个密集的FP16/FP32 FMA操作,与Volta和Turing相比,每个SM的计算功率增加了两倍。...本文简要强调了SM的主要功能: Third-generation Tensor Cores: 所有数据类型的加速,包括FP16、BF16、TF32、FP64、INT8、INT4和Binary; 新的张量核稀疏特性利用了深度学习网络中的细粒度结构稀疏性...上表,比较了V100和A100 FP16张量核心操作,还将V100 FP32、FP64和INT8标准操作与各自的A100 TF32、FP64和INT8张量核心操作进行了比较。...Tensor Core的矩阵稀疏加速原理如下图所示,首先对计算模型做 50% 稀疏,稀疏化后不重要的参数置0,之后通过稀疏指令,在进行矩阵运算时,矩阵中每一行只有非零值的元素与另一矩阵相应元素匹配,这将计算转换成一个更小的密集矩阵乘法...使用稀疏MMA指令,只有矩阵A的每一行中具有非零值的元素与来自矩阵B的相应元素匹配。这将计算转化为一个较小的矩阵乘法,只需要N/2周期,一个2倍的加速。 ?
class IndexedSlices: 一组张量切片在给定指标下的稀疏表示。class InteractiveSession: 用于交互式上下文中(如shell)的TensorFlow会话。....): 计算稀疏张量维上元素的最大值。(弃用参数)sparse_reduce_sum(...): 计算稀疏张量各维元素的和。....): 计算稀疏张量各维元素的和。(弃用参数)sparse_reorder(...): 将稀疏张量重新排序为正则的行主顺序。....): 重置指标和值不变的稀疏张量的形状。sparse_reshape(...): 重新构造稀疏张量,以新的密集形状表示值。sparse_retain(...): 在稀疏张量中保留指定的非空值。....): 根据指标对现有张量进行稀疏更新。tensor_scatter_nd_add(...): 根据指标对现有张量进行稀疏更新。
为了解决这一问题,近日,Google联合Deepmind开发出了在TensorFlow Lite和XNNPACK ML中的新特性和工具库。...通过使用像TensorFlow Lite这样的ML推理框架和XNNPACK ML加速库,工程师得以在模型大小、推理速度和预测质量之间找到一个最佳点来优化他们的模型,以便在各种设备上运行。...图:现代移动架构中1x1卷积的推断时间对比 在现代的推理设备中(如XNNPACK),深度学习模型中1x1卷积的实现以及其他操作都依赖于HWC张量布局,其中张量的维数对应于输入图像的高度、宽度和通道(如红色...而Google对XNNPACK的更新,就使它具有了检测模型是否稀疏的能力: 过程将从标准的密集推理模式切换到稀疏推理模式,在稀疏推理模式中,XNNPACK使用CHW (channel, height,...为了避免每次操作后在稀疏推理最优的CHW张量布局和标准的HWC张量布局之间来回转换,XNNPACK提供了几种在CHW布局中CNN算子的高效实现。
就是向量乘法,即线性代数中的矩阵之间相乘的运算。...1.4 tf.multiply 此函数是:两个矩阵中对应元素各自相乘,即逐元素操作。逐元素操作是指把x中的每一个元素与y中的每一个元素逐个地进行运算。就是哈达玛积。...; y: 一个类型跟张量x相同的张量; 返回值: x * y element-wise; 注意: multiply这个函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法,注意和tf.matmul...向量乘法采用的乘法是线性代数中的矩阵之间相乘的运算。 1.6 DIN使用 在DIN使用如下: # 7....正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加。
最近在tensorflow环境下用CNN来实现mnist,里面设计了一些tensorflow的函数,在之后的学习中肯定会经常使用,因此记录整理下来。...transpose_b: 如果为真, b则在进行乘法计算前进行转置。 adjoint_a: 如果为真, a则在进行乘法计算前进行共轭和转置。 ...adjoint_b: 如果为真, b则在进行乘法计算前进行共轭和转置。 a_is_sparse: 如果为真, a会被处理为稀疏矩阵。 ...1 multiply这个函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法 2 两个相乘的数必须有相同的数据类型,不然就会报错 tf.reduce_sum(tensor...(n-1) 例如:用下面代码进行测试 import tensorflow as tf import numpy as np #生成形状为2*2*3的三维数据 x = np.asarray
RTX 40的电源连接器电缆融化的问题可以通过正确连接电源电缆而轻松避免。 稀疏的网络训练 安培允许在密集的速度下进行细粒度结构的自动稀疏矩阵乘法。这是如何做到的?...图1:Ampere架构GPU中的稀疏矩阵乘法功能所支持的结构 当你将这个稀疏权重矩阵与一些密集输入相乘时,安培的稀疏矩阵张量核心功能会自动将稀疏矩阵压缩为密集表示,其大小为图2所示的一半。...在压缩之后,密集压缩的矩阵瓦片被送入张量核心,张量核心计算的矩阵乘法是通常大小的两倍。这有效地产生了2倍的速度,因为在共享内存的矩阵乘法过程中,带宽要求减半。...图2:在进行矩阵乘法之前,稀疏矩阵被压缩为密集表示。 我在研究中致力于稀疏网络训练,我还写了一篇关于稀疏训练的博文。...有了8位输入,它允许你以两倍的速度加载矩阵乘法的数据,你可以在缓存中存储两倍的矩阵元素,而在Ada和Hopper架构中,缓存是非常大的,现在有了FP8张量核心,你可以为RTX 4090获得0.66 PFLOPS
中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。...注意: (1)multiply这个函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法,注意和tf.matmul区别。...b: 一个类型跟张量a相同的张量。 transpose_a: 如果为真, a则在进行乘法计算前进行转置。 transpose_b: 如果为真, b则在进行乘法计算前进行转置。...adjoint_a: 如果为真, a则在进行乘法计算前进行共轭和转置。 adjoint_b: 如果为真, b则在进行乘法计算前进行共轭和转置。...name: 操作的名字(可选参数) 返回值: 一个跟张量a和张量b类型一样的张量且最内部矩阵是a和b中的相应矩阵的乘积。
附录 C:特殊数据结构 在本附录中,我们将快速查看 TensorFlow 支持的数据结构,超出了常规的浮点或整数张量。这包括字符串、不规则张量、稀疏张量、张量数组、集合和队列。...有关完整列表,请参阅tf.RaggedTensor类的文档。 稀疏张量 TensorFlow 还可以高效地表示稀疏张量(即包含大多数零的张量)。...例如,您可以将稀疏张量乘以任何标量值,得到一个新的稀疏张量,但是您不能将标量值添加到稀疏张量中,因为这不会返回一个稀疏张量: >>> s * 42.0 tensorflow.python.framework.sparse_tensor.SparseTensor...函数定义指向与函数的输入和输出对应的图的部分。在每个FuncGraph中,节点(椭圆形)表示操作(例如,幂运算,常量,或用于参数的占位符如x),而边(操作之间的实箭头)表示将在图中流动的张量。...在 TF 函数中处理变量和其他资源 在 TensorFlow 中,变量和其他有状态对象,如队列或数据集,被称为资源。
使用稀疏数据进行分析的算法最终做了大量的加法和乘法,而这大部分计算是无效的。通常,程序员通过编写自定义代码来优化和避免零条目,但这种代码通常编写起来复杂,而且通常适用范围狭窄。...传统上,为了处理张量计算,数学软件将张量运算分解为不同组成部分进行计算,例如如果需要计算两个张量相乘加第三个向量,则软件将在前两个张量上运行其标准张量乘法程序,存储结果,然后再运行其标准张量加法。...举例来说,目前我们常用的深度学习框架,如 TensorFlow、PyTorch 等都会将一个深度学习的模型转换为一个由基本计算符组成的数据流图,再有下层的计算引擎一次调度执行这些节点对应的内核函数(对于数据图的动态优化参见...好的深度学习框架中会定义成百上千个 Operator,这些 Operator 定义了张量的加、减、乘、除和矩阵乘法等等,因此,在深度学习训练中,这些节点在 GPU 上的执行会转变成数千次 GPU 上的内核执行...通过手工优化代码可以识别稀疏张量中的零条目,在运算中做到只对非零条目进行计算或者省略对零条目的计算,可以简化其操作从而加速张量的计算,但这需要程序员做更多的编程工作。
使用稀疏数据进行分析的算法最终做了大量的加法和乘法,而这大部分计算是无效的。通常,程序员通过编写自定义代码来优化和避免零条目,但这种代码通常编写起来复杂,而且通常适用范围狭窄。...传统上,为了处理张量计算,数学软件将张量运算分解为不同组成部分进行计算,例如如果需要计算两个张量相乘加第三个向量,则软件将在前两个张量上运行其标准张量乘法程序,存储结果,然后再运行其标准张量加法。...举例来说,目前我们常用的深度学习框架,如TensorFlow、PyTorch等都会将一个深度学习的模型转换为一个由基本计算符组成的数据流图,再有下层的计算引擎一次调度执行这些节点对应的内核函数(对于数据图的动态优化参见...好的深度学习框架中会定义成百上千个Operator,这些Operator定义了张量的加、减、乘、除和矩阵乘法等等,因此,在深度学习训练中,这些节点在GPU上的执行会转变成数千次GPU上的内核执行,从而使得张量的计算更加灵活...通过手工优化代码可以识别稀疏张量中的零条目,在运算中做到只对非零条目进行计算或者省略对零条目的计算,可以简化其操作从而加速张量的计算,但这需要程序员做更多的编程工作。
数据流图会被放进session会话中进行运行。会话可以在不同的设备上去运行,比如cpu和GPU。 图的基本构成 数据流图: Tensor (张量) 边里流动的数据 Operation(操作) ?...一个张量里面的元素类型都是一样的。 ? Tensor的属性 因为一个tensor 只能包含一种数据类型。...sparse Tensor(稀疏张量) 一种"稀疏"的Tensor,类似线性代数里面的稀疏矩阵的概念 tf.SparseTensor 在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时...,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。...定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。 定义稀疏矩阵,只需要定义非0的数,其他为0的数会自动的填充。
; 半结构化 (2:4) 稀疏性:一种针对 GPU 优化的稀疏内存格式; Nested Tensor:Nested Tensor 把 {tensor, mask} 打包在一起,将非均匀大小的数据批处理到单个张量中...为了更深入的了解这一现象,本文开始对批大小为 8 的 SAM 推理进行性能分析: 在查看每个内核所花费的时间时,本文观察到 SAM 的大部分 GPU 时间都花费在逐元素内核(elementwise kernels...通过稀疏矩阵(即将值归零)可以使用更少的位来存储权重和激活张量。该研究将张量中哪些权重设置为零的过程称为剪枝。剪枝掉较小的权重可以潜在地减小模型大小,而不会显着损失准确率。...剪枝的方法多种多样,从完全非结构化到高度结构化。虽然非结构化剪枝理论上对精度的影响最小,但 GPU 在进行大型密集矩阵乘法方面尽管非常高效,然而在稀疏情况下可能还会遭受显着的性能下降。...PyTorch 最近支持的一种剪枝方法旨在寻求平衡,称为半结构化(或 2:4)稀疏性。这种稀疏存储将原始张量减少了 50%,同时产生密集张量输出。参见下图的说明。
name:操作的名称(可选)。返回值:一个张量或稀疏张量,其大小、类型和稀疏性与x的绝对值相同。...b:与a类型和秩相同的张量。transpose_a:如果为真,则a在乘法之前转置。transpose_a:如果为真,则b在乘法之前转置。adjoint_a:如果是真的,a是共轭和转置之前的乘法。...adjoint_b:如果为真,b是共轭和转置之前的乘法。a_is_疏:如果为真,则将a视为一个稀疏矩阵。b_is_sparse:如果为真,则将b视为稀疏矩阵。name:操作的名称(可选)。...adjoint_b:如果为真,b是共轭和转置之前的乘法。a_is_疏:如果为真,则将a视为一个稀疏矩阵。b_is_sparse:如果为真,则将b视为稀疏矩阵。name:操作的名称(可选)。...给定一个张量x和一个张量y,这个操作计算x和y中对应的元素。
TensorFlow 的名字来源于张量。 张量是向量和矩阵到更高维度的一般化。 张量的等级是唯一指定该张量的每个元素所用的索引数。...也可以这样: print(t2[1, 0, 2].numpy()) 输出将如下所示: 8.0 查找张量的大小(元素数) 张量中的元素数量很容易获得。...要查找张量的数据类型,请使用以下dtype属性: t3.dtype 输出将如下所示: tf.float32 指定按元素的基本张量操作 如您所料,使用重载运算符+,-,*和/来指定逐元素基本张量操作,如下所示...在本节中,我们将研究一些有用的 TensorFlow 操作,尤其是在神经网络编程的上下文中。 求两个张量之间的平方差 在本书的后面,我们将需要找到两个张量之差的平方。...现在,我们将研究如何在张量轴上查找具有最大值和最小值的元素的索引。
通过正确连接电源线,可以避免 RTX 40 中电源连接器电缆熔化的问题。 稀疏网络训练 Ampere 允许以密集的速度进行细粒度结构自动稀疏矩阵乘法。这是如何运作的?...取一个权重矩阵并将其分成 4 个元素的片段。现在想象这 4 个中的 2 个元素为零。如下图所示: 图 1:Ampere GPU 中稀疏矩阵乘法功能支持的结构。...当你将此稀疏权重矩阵与一些密集输入相乘时,Ampere 中的稀疏矩阵张量核心功能会自动将稀疏矩阵压缩为大小一半的密集表示,如下图所示。...压缩后密集压缩矩阵块被送入张量核心,该核心计算两倍于通常大小的矩阵乘法。这有效地产生了 2 倍加速,因为从共享内存进行矩阵乘法期间的带宽要求减半。...图 2:稀疏矩阵在执行矩阵乘法之前被压缩为密集表示。
领取专属 10元无门槛券
手把手带您无忧上云