首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何将我在Python Pandas数据帧中丢弃的副本写入文件

在Python的Pandas库中,如果你想要将丢弃的副本(例如,通过drop方法删除的行或列)写入文件,你可以先将这些数据保存到一个新的数据帧中,然后再将这个新的数据帧写入文件。以下是一个示例代码,展示了如何实现这一点:

示例代码

假设你有一个原始的数据帧df,并且你想要删除某些行或列,并将这些被删除的部分保存到一个文件中。

代码语言:txt
复制
import pandas as pd

# 假设这是你的原始数据帧
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': [9, 10, 11, 12]
}
df = pd.DataFrame(data)

# 假设你要删除某些行(例如,索引为1和2的行)
rows_to_drop = [1, 2]
dropped_rows_df = df.loc[rows_to_drop]

# 或者假设你要删除某些列(例如,列'B'和'C')
columns_to_drop = ['B', 'C']
dropped_columns_df = df[columns_to_drop]

# 将被删除的行写入文件
dropped_rows_df.to_csv('dropped_rows.csv', index=False)

# 将被删除的列写入文件
dropped_columns_df.to_csv('dropped_columns.csv', index=False)

解释

  1. 创建原始数据帧:首先,我们创建一个示例数据帧df
  2. 选择要删除的行或列
    • 对于行,我们使用loc方法选择要删除的行,并将这些行保存到一个新的数据帧dropped_rows_df中。
    • 对于列,我们直接通过列名选择要删除的列,并将这些列保存到一个新的数据帧dropped_columns_df中。
  • 写入文件:使用to_csv方法将新的数据帧写入CSV文件。index=False参数表示不将行索引写入文件。

应用场景

  • 数据审计:在数据处理过程中,记录哪些数据被删除或修改,以便进行审计和追踪。
  • 数据恢复:如果需要恢复之前删除的数据,可以随时从文件中读取这些数据。
  • 数据分析:有时需要分析被删除的数据,以了解其对整体数据的影响。

注意事项

  • 确保在写入文件时处理好数据的格式和编码,以避免读取时的错误。
  • 如果数据量较大,可以考虑使用更高效的文件格式(如Parquet)或分块处理。

通过这种方式,你可以有效地管理和保存在数据处理过程中被丢弃的数据副本。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

使用CSV模块和Pandas在Python中读取和写入CSV文件

Python CSV模块 Python提供了一个CSV模块来处理CSV文件。要读取/写入数据,您需要遍历CSV行。您需要使用split方法从指定的列获取数据。...csv.QUOTE_MINIMAL-引用带有特殊字符的字段 csv.QUOTE_NONNUMERIC-引用所有非数字值的字段 csv.QUOTE_NONE –在输出中不引用任何内容 如何读取CSV文件...您必须使用命令 pip install pandas 安装pandas库。在Windows中,在Linux的终端中,您将在命令提示符中执行此命令。...在仅三行代码中,您将获得与之前相同的结果。熊猫知道CSV的第一行包含列名,它将自动使用它们。 用Pandas写入CSV文件 使用Pandas写入CSV文件就像阅读一样容易。您可以在这里说服。...结论 因此,现在您知道如何使用方法“ csv”以及以CSV格式读取和写入数据。CSV文件易于读取和管理,并且尺寸较小,因此相对较快地进行处理和传输,因此在软件应用程序中得到了广泛使用。

20.1K20
  • Python网络爬虫中爬到的数据怎么分列分行写入csv文件中

    一、前言 前几天在Python白银交流群有个叫【꯭】的粉丝问了一个Python网络爬虫中爬到的数据怎么分列分行写入csv文件中的问题,这里拿出来给大家分享下,一起学习下。.../td//text()')[1:]) + '\n' # 追加写入文件 with open('电影.csv', 'a', encoding='utf-8') as f: f.write...还有更好的方法在后头呢。下面的这个代码是不用xpath写的,改用pandas处理网页结构。...ver=normal' } resp = requests.get(url=url, headers=headers).text # 利用pandas保存csv文件 pd.read_html...这篇文章主要分享了Python网络爬虫中爬到的数据怎么分列分行写入csv文件中的问题,文中针对该问题给出了具体的解析和代码演示,帮助粉丝顺利解决了问题。

    3.3K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    【学习】在Python中利用Pandas库处理大数据的简单介绍

    在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。...如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G...在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。

    3.2K70

    如何掌握在Python中监控文件系统的技术

    通过阅读本文,您将了解如何检测对Python应用程序中现有文件所做的更改。我们将使用一个维护良好的模块,叫做看门狗(watchdog)。...在本教程中,我将只介绍Python API库。让我们继续下一节,开始安装必要的模块。 设置 设置是相当简单和直接的pip安装。在继续之前,强烈建议设置一个虚拟环境。...有两种方法 安装在PyPI 在终端中运行如下命令。 pip install watchdog 它将安装PyPI(在撰写本文时为0.10.2)的最新版本。...从代码库安装 此外,您可以在本地文件夹中克隆存储库并正常安装它。首先,让我们使用以下命令克隆它。...直接从存储库克隆它的一个主要优点是,您可以获得带有附加特性的最新版本。 您可以在终端中运行以下命令来验证安装是否成功。

    1.9K20

    Python操控Excel:使用Python在主文件中添加其他工作簿中的数据

    标签:Python与Excel,合并工作簿 本文介绍使用Python向Excel主文件添加新数据的最佳方法。该方法可以保存主数据格式和文件中的所有内容。...安装库 本文使用xlwings库,一个操控Excel文件的最好的Python库。...图2 可以看出: 1.主文件包含两个工作表,都含有数据。 2.每个工作表都有其格式。 3.想要在每个工作表的最后一行下面的空行开始添加数据。如图2所示,在“湖北”工作表中,是在第5行开始添加新数据。...图3 接下来,要解决如何将新数据放置在想要的位置。 这里,要将新数据放置在紧邻工作表最后一行的下一行,例如上图2中的第5行。那么,我们在Excel中是如何找到最后一个数据行的呢?...图6 将数据转到主文件 下面的代码将新数据工作簿中的数据转移到主文件工作簿中: 图7 上述代码运行后,主文件如下图8所示。 图8 可以看到,添加了新数据,但格式不一致。

    7.9K20

    在Python中按路径读取数据文件的几种方式

    img 其中test_1是一个包,在util.py里面想导入同一个包里面的read.py中的read函数,那么代码可以写为: from .read import read def util():...此时read.py文件中的内容如下: def read(): print('阅读文件') 通过包外面的main.py运行代码,运行效果如下图所示: ?...img 这个原因很简单,就是如果数据文件的地址写为:./data.txt,那么Python就会从当前工作区文件夹里面寻找data.txt。...img pkgutil是Python自带的用于包管理相关操作的库,pkgutil能根据包名找到包里面的数据文件,然后读取为bytes型的数据。...此时如果要在teat_1包的read.py中读取data2.txt中的内容,那么只需要修改pkgutil.get_data的第一个参数为test_2和数据文件的名字即可,运行效果如下图所示: ?

    20.4K20

    在pycharm中如何新建Python文件?_github下载的python源码项目怎么用

    问题 最近想把本地python项目提交到github,在网上找很多教程,都是如何在pycharm设置操作,但是这些人只讲了一部分,对于小白来说,需要从头到尾彻底了解一下。...pycharm中设置 在pycharm需要配置github的账户名和密码,以及要提交的仓库,具体操作如下 File-settings 在搜索框输入git 如上面图所示,搜索框会出现github,然后在旁边输入你...git init,初始化本文件夹为仓库,(如果该文件夹下有项目了,可以把项目先移到另一个文件夹,然后用命令git init初始化原来项目文件夹为仓库,然后再将项目拷贝进来)。...初始化后会发现该文件夹下多了个.git的文件夹。...pycharm中配置仓库提交 点击VSC ——》Import into Version Control ——》Share Project on Github 因为有默认的名称,我这里是已经建过仓库了

    2.8K20

    完整数据分析流程:Python中的Pandas如何解决业务问题

    图片开篇作为万金油式的胶水语言,Python几乎无所不能,在数据科学领域的作用更是不可取代。数据分析硬实力中,Python是一个非常值得投入学习的工具。...这其中,数据分析师用得最多的模块非Pandas莫属,如果你已经在接触它了,不妨一起来通过完整的数据分析流程,探索Pandas是如何解决业务问题的。...数据背景为了能尽量多地使用不同的Pandas函数,我设计了一个古古怪怪但是实际中又很真实的数据,说白了就是比较多不规范的地方,等着我们去清洗。数据源是改编自一家超市的订单,文末附文件路径。...,比如要分析2019-2021年的用户行为,则在此时间段之外的行为都不应该被纳入分析 如何处理:一般情况下,对于异常值,直接剔除即可但对于数据相对不多,或该特征比较重要的情况下,异常值可以通过用平均值替代等更丰富的方式处理在了解数据清洗的含义后...与业务或运维沟通后,明确测试订单的标识是在“产品名称”列中带“测试”的字样。

    1.7K31

    在Oracle中,如何正确的删除表空间数据文件?

    TS_DD_LHR DROP DATAFILE '/tmp/ts_dd_lhr01.dbf'; 关于该命令需要注意以下几点: ① 该语句会删除磁盘上的文件并更新控制文件和数据字典中的信息,删除之后的原数据文件序列号可以重用...② 该语句只能是在相关数据文件ONLINE的时候才可以使用。...PURGE;”或者在已经使用了“DROP TABLE XXX;”的情况下,再使用“PURGE TABLE "XXX表在回收站中的名称";”来删除回收站中的该表,否则空间还是不释放,数据文件仍然不能DROP...OFFLINE FOR DROP命令相当于把一个数据文件置于离线状态,并且需要恢复,并非删除数据文件。数据文件的相关信息还会存在数据字典和控制文件中。...数据文件中含有数据的处理办法 如果数据文件中有数据,需要先迁移,重建索引。

    7.8K40

    独家 | Pandas 2.0 数据科学家的游戏改变者(附链接)

    4.写入时复制优化 Pandas 2.0 还添加了一种新的惰性复制机制,该机制会延迟复制数据帧和系列对象,直到它们被修改。...这意味着在启用写入时复制时,某些方法将返回视图而不是副本,这通过最大限度地减少不必要的数据重复来提高内存效率。 这也意味着在使用链式分配时需要格外小心。...如果启用了写入时复制模式,则链式分配将不起作用,因为它们指向一个临时对象,该对象是索引操作的结果(在写入时复制下的行为类似于副本)。...:在链接分配中更改原始数据帧。...df.head() # <---- df does not change 启用写入时复制:在链接分配中不会更改原始数据帧。作者代码段。

    44830

    使用 Apache Hudi + Daft + Streamlit 构建 Lakehouse 分析应用

    Streamlit 支持从数据库、API 和文件系统等各种来源轻松使用数据,从而轻松集成到应用程序中。在这篇博客中,我们将重点介绍如何使用直接来自开放湖仓一体平台的数据来构建数据应用。...数据文件以可访问的开放表格式存储在基于云的对象存储(如 Amazon S3、Azure Blob 或 Google Cloud Storage)中,元数据由“表格式”组件管理。...动手仪表板 这个动手示例的目的是展示如何使用 Daft 作为查询引擎来读取 Hudi 表,然后在 Python 中构建面向用户的分析应用程序。具体的数据集和用例不是本博客的主要关注点。...源数据将是一个 CSV 文件,在创建湖仓一体表时,我们将记录写入 Parquet。...在这些情况下,我们不是在 Pandas 中执行聚合,而是利用 Daft 的功能先聚合数据,然后将结果传递到可视化库。事实证明,此方法在处理非常大的数据集时特别有效,这在湖仓一体工作负载中很常见。

    15410

    【数据处理包Pandas】数据载入与预处理

    Pandas 库将外部数据转换为 DataFrame 数据格式,处理完成后再存储到相应的外部文件中。 1、读 / 写文本文件 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...,默认为None dtype 接收dict,代表写入的数据类型(列名为key,数据格式为values),默认为None engine 接收c或者python,代表数据解析引擎,默认为c nrows 接收...int,表示读取前n行,默认为None 文本文件的存储和读取类似,结构化数据可以通过 Pandas 中的to_csv函数实现以 CSV 文件格式存储文件。...Python 中的None,Pandas 会自动把None转变成NaN。...2 在缺失值的处理方法中,删除缺失值是常用的方法之一。

    11810

    Python数据处理从零开始----第二章(pandas)⑦pandas读写csv文件(1)

    这一节我们将学习如何使用Python和Pandas中的逗号分隔(CSV)文件。 我们将概述如何使用Pandas将CSV加载到dataframe以及如何将dataframe写入CSV。...在第一部分中,我们将通过示例介绍如何读取CSV文件,如何从CSV读取特定列,如何读取多个CSV文件以及将它们组合到一个数据帧,以及最后如何转换数据 根据特定的数据类型(例如,使用Pandas read_csv...Pandas从文件导入CSV 在这个Pandas读取CSV教程的第一个例子中,我们将使用read_csv将CSV加载到与脚本位于同一目录中的数据帧。...在我们的例子中,我们将使用整数0,我们将获得更好的数据帧: df = pd.read_csv(url_csv, index_col=0) df.head() ?...image.png index_col参数也可以以字符串作为输入,现在我们将使用不同的数据文件。 在下一个示例中,我们将CSV读入Pandas数据帧并使用idNum列作为索引。

    3.7K20
    领券