首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何将时间序列数据分割成3列3通道?

时间序列数据分割成3列3通道的方法是通过将时间序列数据按照一定的规则进行切割,然后重新组织成3列3通道的形式。具体步骤如下:

  1. 数据切割:将时间序列数据按照一定的时间窗口大小进行切割。时间窗口大小可以根据实际需求进行调整,通常选择合适的窗口大小可以保留数据的时序特征。例如,如果时间序列数据是每秒采样一次,可以选择窗口大小为3秒,即每个窗口包含3个数据点。
  2. 组织成3列3通道:将切割后的数据按照一定的规则重新组织成3列3通道的形式。具体规则可以根据实际需求进行设计,以下是一种常见的组织方式:
    • 将切割后的数据按照时间顺序排列,每一列代表一个时间步。
    • 将每个时间步的数据按照一定的规则分配到3个通道中。通常可以采用轮流分配的方式,即第一个时间步的数据分配到第一个通道,第二个时间步的数据分配到第二个通道,依此类推,直到第三个时间步的数据分配到第三个通道。然后再从第一个通道开始分配,依次循环。
  • 数据应用场景:分割成3列3通道的时间序列数据可以应用于多个领域,例如:
    • 信号处理:将传感器采集到的时间序列信号分割成3列3通道的形式,可以方便地提取信号的时序特征,进行信号处理和分析。
    • 图像处理:将图像序列分割成3列3通道的形式,可以用于视频处理、动作识别等应用。
    • 语音处理:将语音信号分割成3列3通道的形式,可以用于语音识别、语音合成等应用。
  • 推荐的腾讯云相关产品和产品介绍链接地址:腾讯云提供了多个与云计算相关的产品和服务,以下是一些推荐的产品和对应的介绍链接地址:
    • 云服务器(ECS):https://cloud.tencent.com/product/cvm
    • 云数据库(CDB):https://cloud.tencent.com/product/cdb
    • 人工智能(AI):https://cloud.tencent.com/product/ai
    • 云存储(COS):https://cloud.tencent.com/product/cos
    • 区块链(BCS):https://cloud.tencent.com/product/bcs

请注意,以上推荐的腾讯云产品仅供参考,具体选择应根据实际需求和项目要求进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

经典综述|EEG源空间功能连接—致力于实现时-空间上高分辨率脑网络分析

一、写在前面 这是2018年发布于信号处理领域权威顶级杂志《IEEE Signal Processing Magazine》上的一篇综述文章,该文章对于如何进行EEG源空间功能连接研究提供了详尽和权威的指导。 与其他成像方法相比,EEG具有超高时间分辨率、设备便宜等优点,但是EEG最大的问题似乎是其空间分辨率比较低(头皮记录的EEG空间分辨率是cm水平,而MRI成像技术的空间分辨率是mm水平的)。那么如何提高EEG的空间分辨率呢?基于EEG产生的电生理机制,从设备研发这个角度去提高EEG的空间分辨率似乎潜在空间不大(当然,增加EEG通道数可以从一定程度上增加EEG空间分辨率,但是这种方法仍然不能解决像体积传导效应等问题),因此,研究者从方法学上出发,提出了EEG溯源分析的方法,即把记录到的头皮EEG信号通过一定的方法得到皮层脑区电信号。正如该篇文章的副标题所阐述的,EEG源空间的功能连接分析旨在保留EEG超高时间分辨率的优势之外,弥补低空间分辨率的缺点,最终实现时间和空间高分辨率的脑网络分析。从目前的研究来看,这种方法似乎还是挺有效的(至少目前已经发表了不少EEG溯源方面的论文),但是也有不少研究者对EEG溯源这种方法并不十分认可(EEG发挥好自己超高时间分辨率的优势就行了,不要在空间分辨率这方面勉强,这方面还是让MRI来~~)。不管如何,该篇文献可以作为EEG溯源空间功能连接研究的指导手册,笔者在这里对这篇综述进行解读,解读并非一字一句翻译,部分加入了自己的见解,如有不当,敬请谅解。

00
  • 从诱发反应中解码动态脑模式:应用于时间序列神经成像数据的多元模式分析教程

    多变量模式分析(MVPA)或大脑解码方法已经成为分析功能磁共振数据的标准做法。虽然解码方法已广泛应用于脑机接口,但其应用于时间序列神经成像数据(如脑磁图、脑电图)以解决认知神经科学中的实验问题是最近的事。在本教程中,我们描述了从认知神经科学的角度来告知未来时间序列解码研究的广泛选择。使用脑磁图数据的例子,我们说明了解码分析流程中的不同选项对实验结果的影响,目的是解码不同的知觉刺激或认知状态随时间的动态大脑激活模式。我们展示了在预处理(如降维、降采样、试次平均)和解码(如分类器选择、交叉验证设计)时所做的决策。除了标准解码外,我们还描述了对时变神经成像数据的MVPA的扩展,包括表征相似性分析、时间泛化和分类器权重图的解释。最后,我们概述了时间序列解码实验设计和解释中的重要注意事项。本文发表在Journal of Cognitive Neuroscience杂志。

    01

    NeuroImage:警觉性水平对脑电微状态序列调制的证据

    大脑的瞬时整体功能状态反映在其电场构型中,聚类分析方法显示了四种构型,称为脑电微状态类A到D。微状态参数的变化与许多神经精神障碍、任务表现和精神状态相关,这确立了它们与认知的相关性。然而,使用闭眼休息状态数据来评估微状态参数的时间动态的常见做法可能会导致与警觉性相关的系统性混淆。研究人员研究了两个独立数据集中的微状态参数的动态变化,结果表明,微状态参数与通过脑电功率分析和fMRI全局信号评估的警觉性水平有很强的相关性。微状态C的持续时间和贡献,以及向微状态C过渡的概率与警觉性正相关,而微状态A和微状态B则相反。此外,在寻找微状态与警觉性水平之间对应关系的来源时,研究发现警觉性水平对微状态序列参数的格兰杰因果效应。总而言之,本研究的发现表明,微状态的持续时间和发生具有不同的起源,可能反映了不同的生理过程。最后,本研究结果表明,在静息态EEG研究中需要考虑警觉性水平。

    00

    静息态下大脑的动态模块化指纹

    摘要:人脑是一个动态的模块化网络,可以分解为一系列模块,其活动随时间不断变化。静息状态下,在亚秒级的时间尺度上会出现几个脑网络,即静息态网络(RSNs),并进行交互通信。本文尝试探究自发脑模块化的快速重塑及其与RSNs的关系。三个独立的健康受试者静息态数据集(N=568),对其使用脑电/脑磁图(EEG/MEG)来探究模块化脑网络的动态活动。本文证实了RSNs的存在,且其中一些网络存在分裂现象,尤其是默认模式网络、视觉、颞区和背侧注意力网络。本文也证明了心理意象中的个体间差异与特定模块的时间特征有关,尤其是视觉网络。综上所述,本文的研究结果表明大规模电生理网络在静息态时具有依赖模块化的动态指纹。

    03

    在神经反馈任务中同时进行EEG-fMRI,多模态数据集成的大脑成像数据集

    虽然将EEG和fMRI结合使用可实现精细的空间分辨率和准确的时间分辨率集成,但仍带来许多挑战,比如要实时执行以实现神经反馈(Neurofeedback, NF)循环时。在这项研究里,研究人员描述了在运动想象NF任务期间同时获取的EEG和fMRI的多模态数据集,并补充了MRI结构数据。同时研究人员说明可以从该数据集中提取的信息类型,并说明其潜在用途。这是第一个脑电图和fMRI同步记录的NF,展示了第一个开放存取双模态NF数据集脑电图和fMRI。研究人员表示,(1)改进和测试多模态数据集成方法的宝贵工具,(2)改善提供的NF的质量,(3)改善在MRI下获得的脑电图去噪的方法,(4) 研究使用多模态信息的运动图像的神经标记。

    02

    头皮和硬膜下EEG对脑深部活动的定位

    对于皮层脑电图(ECoG)和头皮脑电图(sEEG)在定位大脑深层活动来源的能力上的不同尚不明显。与sEEG相比,ECoG的空间分辨率和信噪比更高,但其空间覆盖范围受到更多限制,有效测量组织活动的体积也是如此。本研究记录了4名顽固性癫痫患者在安静清醒状态下的多模式数据集,这些数据包括同步的头皮、硬膜下和深部EEG电极记录。本研究应用独立成分分析(ICA)来分离θ、α和β频段活动中的独立源。在所有患者中都观察到了硬膜下和头皮EEG成分,这与深部电极的一个或多个触点有显着的零滞后相关性。随后对相关成分的偶极建模显示,其偶极位置明显比非相关成分的偶极位置更接近深部电极。这些发现支持这样一种观点,即在两种记录方式中发现的成分都来自深部电极附近的神经活动。从本研究看,出于临床目的的将ECoG电极植入在靠近深部电极的位置,这并不能使源定位精度显著提高。此外,由于嵌入了ECoG电极的电隔离硅胶片,ECoG栅格衰减了sEEG。偶极子模型实验结果表明,sEEG的深源定位精度与ECoG相当。 1、背景 研究证明,与大脑深层结构的距离越大,记录的电极活动就越弱。在定位近端活动方面,ECoG较EEG有相当大的优势,具有优越的空间分辨率、频谱带宽和信噪比(SNR),因为记录不会被空间过滤或被头盖骨阻挡。然而,与EEG的整个头皮覆盖相比,ECoG网格或条带只覆盖皮质表面的有限区域,可能会影响更远端来源的局部化准确性。因此,到目前为止,还不清楚ECoG在定位深部和皮层下区域的源信号方面是否比EEG有优势。 要评估EEG和ECoG在深部源定位方面的实际比较,需要同时记录有/无创性的皮层和深层活动,如图1。

    03

    比较脑磁图与高密度脑电图的内在功能连通性

    脑磁图(MEG)与基于限带功率包络相关的静息状态功能连接(rsFC)联合使用,可以研究人类大脑内在网络所组成的静息状态网络(RSNs)。然而,目前MEG系统的可用性有限,阻碍了电生理rsFC的临床应用。在这里,我们直接比较了已知的RSNs以及全脑rsFC连接体及其状态动力学,这些数据来源于同时记录的MEG和高密度头皮脑电图(EEG)静息状态数据。通过比较头部边界模型和头部有限元模型的结果,研究了头部模型精度对脑电rsFC估计的影响。结果显示,除额顶叶网络外,MEG和EEG获得的RSN图大部分相似。在连接体水平,与脑电图相比,MEG对额部rsFC的敏感性较低,而对顶枕部rsFC的敏感性较高。这主要是由于脑磁图传感器相对于头皮位置的不均匀性,当考虑相对脑磁图传感器位置时,显著的脑磁图差异消失了。在区分灰质和白质的脑电图中,默认网络是唯一需要高级头部建模的RSN。重要的是,rsFC状态动力学的比较证明了MEG和头皮脑电图之间的较差的对应关系,表明了对瞬态神经功能整合的不同成分的敏感性。因此,这项研究表明,基于人脑连接体的静态rsFC研究可以以类似于MEG的方式在头皮脑电图中进行,为rsFC分析的广泛临床应用开辟了道路。本文发表在NeuroImage杂志。。

    03

    用于追踪认知任务期间的亚秒级脑动态的高密度脑电

    这项工作为社区提供了高密度脑电图(HD-EEG, 256个通道)数据集,这些数据集是在无任务和任务相关范式下收集的。它包括43名健康的参与者执行视觉命名和拼写任务,视觉和听觉命名任务和视觉工作记忆任务,以及静息状态。HD-EEG数据以脑成像数据结构(bid)格式提供。这些数据集可以用来(i)追踪大脑网络动力学和在不同条件下(命名/拼写/其他)的次秒级时间尺度,和模态(听觉、视觉)的快速重新配置和相互比较,(ii)验证几个方法中包含的参数,这些方法是用来通过头皮脑电图估计大脑皮层网络,例如最优通道数量和感兴趣区域数量的问题,以及(iii)允许到目前为止使用HD-EEG获得的结果的再现性。我们希望,这些数据集的发布将推动新方法的发展,可以用来评估大脑皮层网络,并更好地了解大脑在休息和工作时的一般功能。 数据可从https://openneuro.org免费获取。 1.1.背景和概要 新的证据表明,来自于空间上遥远的大脑区域之间的通信导致大脑功能(失能)。尽管在过去的几十年里,功能性磁共振成像已经给神经科学带来了革命性的变化,但其固有的时间分辨率较差,这是限制其用于跟踪快速大脑网络动态的主要缺陷,而这种网络动态是多个大脑(认知和感知运动)过程执行的基础。脑电图/脑磁图(EEG/MEG)是一种独特的非侵入性技术,能够在毫秒的时间尺度上跟踪大脑动态。 在无任务范式和任务相关范式下,已经有一些研究使用脑电图/脑磁图源连通性方法来跟踪大脑皮层网络。然而,尽管人类连接组项目(HCP)和几个脑电图数据集的MEG数据集模型得到了人们的称赞,但只有很少的数据可以同时用于休息和任务,并且在不同任务中开放获取的高密度脑电图(HD-EEG, 256个通道)数据仍然缺失。 HD-EEG与复杂的信号处理算法相结合,正日益将EEG转变为一种潜在的神经成像模式。最近的脑电图研究揭示了在休息和认知任务期间跟踪快速功能连接动态的可能性。此外,一些研究报告了HD-EEG数据(与低脑电通道密度相比)在某些病理条件下的潜在应用,如癫痫网络的定位和神经退行性疾病中认知功能下降的检测。此外,新出现的证据表明,在一定程度上,使用HD-EEG可以捕获皮层下的结构。在这种背景下,无任务和任务相关的可用性开放HD-EEG数据库正在快速成为强制性的(i)解读(次秒级)重组的脑功能网络在认知,(ii)开发新的信号处理方法,充分估计大脑皮层网络和(iii)允许使用HD-EEG到目前为止结果的再现性。 在此,我们提供了第一个开放获取的HD-EEG(256通道)数据集,在休息状态和4种不同的任务(视觉命名、听觉命名、视觉拼写和工作记忆)下记录。部分数据已经被用于开发和分析各种信号处理方法。 特别地,我们的努力集中在对休息和图片命名期间的脑功能网络的估计上。然而,这些研究都没有描述数据集的细节,而且到目前为止的工作只用了小部分数据。在这项工作中,我们提供了所有必要的细节和一个开放的数据库,以便国际科学界能够在无任务和与任务相关的范式中自由地产生对大脑功能的更好的理解。这也将有助于新方法的开发,以提高目前使用的HD-EEG评估皮质脑网络的技术的准确性,并通过比较结果和未来的meta分析来使得这些技术互相面对。我们希望这个数据集将有助于使脑电图源空间网络分析成为一种成熟的技术,以解决认知和临床神经科学中的一些问题。 1.2 方法 1.2.1 数据采集 数据是2012年至2017年在法国雷恩进行的两项不同实验中收集的。第一数据集包括视觉对象名字的命名和拼写(图1)。第二个数据集包括静息状态、视觉/听觉命名和视觉工作记忆任务(图2)。同样的设备中使用的数据集和录音都在同一个地方(雷恩大学医院中心)。采用HD-EEG系统(EGI,256个电极)以1 KHz采样率记录脑活动,电极阻抗保持在50 k ω以下。两项研究的参与者是不同的。他们提供了参与的书面知情同意,并完成了一些纳入/排除标准问卷(总结见表1)。参与者坐在法拉第结构房间的扶手椅上。房间由百叶窗减弱的自然光照亮。我们的参与者的头大约位于屏幕前1米。图像以白色背景上的黑色图画的形式集中呈现,没有任何尺寸修改(10厘米x 10厘米)。这种设置对应于从注视点的最大靠近度2.86度的视角,从而使整个图像处于参与者的中心凹视野内。声音通过50瓦的罗技扬声器显示,没有任何音频隔离的可能性。

    00

    HAPPE+ER软件:标准化事件相关电位ERP的预处理的pipeline

    事件相关电位(ERP)设计是一种用脑电图(EEG)评估神经认知功能的常用方法。然而,传统的ERP数据预处理方法是手动、主观、耗时的过程,许多自动化处理方法也很少有针对ERP分析有优化(特别是在发展或临床人群中)。本文提出并验证了HAPPE+事件相关(HAPPE+ER)软件,标准化和自动化预处理过程,且优化了整个生命周期的ERP分析。HAPPE+ER通过预处理和事件相关电位数据的统计分析来处理原始数据。HAPPE+ER还包括数据质量和处理质量指标的事后报告,标准化对数据处理的评估和报告。最后,HAPPE+ER包括后处理脚本,以方便验证HAPPE+ER的性能或与其他预处理方法的性能进行比较。本文用模拟和真实的ERP数据介绍了多种方法,HAPPE+ER软件可在https://www.gnu.org/licenses/#GPL的GNU通用公共许可证条款下免费获得。

    00

    探索MEG脑指纹:评估、陷阱和解释

    基于受试者的功能性连接组(FC)的个体特征(即“FC指纹”)已经成为当代神经科学研究的一个非常热门的目标,但脑磁图(MEG)数据中的FC指纹还没有得到广泛的研究。本研究中,我们研究来自人类连接组计划(HCP)的静息状态的MEG数据,以评估脑磁图FC指纹及其与包括振幅和相位耦合的功能连接指标、空间渗漏校正、频带和行为意义在内的几个因素的关系。为此,我们首先使用两种识别评分方法,区分识别率和成功率,为每个FC测量提供定量指纹评分。其次,我们探索了横跨不同频段(δ、θ、α、β和γ)的边缘和节点的MEG指纹模式。最后,我们研究了从同一受试者的MEG和fMRI记录中获得的跨模态指纹模式。我们的结果表明,指纹识别的性能在很大程度上取决于功能连接指标、频带、识别评分方法和空间渗漏校正。本研究初步提供了MEG指纹与不同方法学和电生理因素相关的第一个特征,并有助于理解指纹的跨模态关系。

    00

    利用fMRI验证运动执行和想象期间辅助运动区fNIRS激活

    与fMRI相比,因fNIRS对研究神经反馈(NFB)具有一些优点,使得该技术成为研究者感兴趣的对象。使用fNIRS研究NFB的先决条件是能测量到感兴趣的大脑区域信号。本研究关注的是辅助运动区(SMA)。共招募16名健康老年人被试完成分离的连续波(CW)fNIRS和fMRI检测。任务包括手部运动执行和运动想象(MI)以及想象全身运动。个人的解剖数据用来(i)为fMRI分析定位感兴趣的区域,(ii)从fNIRS通道对应的皮层区域提取fMRI BOLD响应,(iii)选择fNIRS通道。分析了氧和血红蛋白(Δ[HbO])和脱氧血红蛋白浓度变化(Δ[HbR])。结果发现了不同MI任务间微小的变化,表明对于全身MI运动和手部MI运动Δ[HbR]更为特别。基于个人解剖结构的fNIRS通道选择并没有改善结果。总之,该研究表明,就空间特异性和任务敏感性而言,使用CW-fNIRS能可靠地测量SMA激活。

    03
    领券