首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python篇】matplotlib超详细教程-由入门到精通(上篇)

在饼图中,sizes 列表中的每个元素决定了饼图中各个部分的大小比例。matplotlib 会根据这些数值的比例自动计算每一部分的角度和面积。 labels:这是用来为饼图中的各个部分添加标签。...autopct=‘%1.1f%%’:这是用来设置饼图中每个部分的自动百分比显示的。...plt.legend():显示图例,以便区分不同的产品线。 通过这个例子,我们学会了如何在同一个图表中绘制多个数据系列,这在多维数据的分析中非常有用。...4.3 创建子图布局 当我们有多组数据想要展示在同一个窗口时,可以使用子图布局。在 matplotlib 中,子图功能允许我们将同一个图表窗口划分为多个区域,每个区域展示不同的数据。...fig, ax = plt.subplots(2, 1) # 2行1列的子图布局 # 绘制第一个子图 ax[0].plot(日期, 产品A, color='blue') ax[0].set_title

1.4K10

数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。 在pandas中,我们可能有多个数据列,并且带有行和列的标签。...DataFrame的plot方法在同一个子图中将每一列绘制为不同的折线,并自动生成图例(见图9-14): In [62]: df = pd.DataFrame(np.random.randn(10, 4...-3 Series.plot方法参数 DataFrame拥有多个选项,允许灵活地处理列;例如,是否将各列绘制到同一个子图中,或为各列生成独立的子图。...参数 描述 subplots 将DataFrame的每一列绘制在独立的子图中 sharex 如果subplots=True,则共享相同的x轴、刻度和范围 sharey 如果subplots=True,则共享相同的...y轴 figsize 用于生成图片尺寸的元组 title 标题字符串 legend 添加子图图例(默认是True) sort_columns 按字母顺序绘制各列,默认情况下使用已有的列顺序 ▲表9-4

5.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    原来使用 Pandas 绘制图表也这么惊艳

    ,在 y 轴上绘制 DataFrame 中的其他数字列。...: 正如我们在图中看到的,title 参数为绘图添加了一个标题,而 ylabel 为绘图的 y 轴设置了一个标签。...如果我们想将多个饼图中所有列的数据表示为子图,我们可以将 True 分配给 subplots 参数,如下所示: df_3Months.plot(kind='pie', legend=False, autopct...='%.f', subplots=True, figsize=(14,8)) Output: 散点图 散点图在 x 和 y 轴上绘制数据点以显示两个变量之间的相关性。...六边形图 当数据非常密集时,六边形 bin 图(也称为 hexbin 图)可以替代散点图。换句话说,当数据点的数量很大,并且每个数据点不能单独绘制时,最好使用这种以蜂窝形式表示数据的绘图。

    4.6K50

    Matplotlib 中文用户指南 3.6 图例指南

    本指南使用一些常见术语,为了清楚起见,这些术语在此处进行说明: 图例条目 图例由一个或多个图例条目组成。 一个条目由一个键和一个标签组成。 图例键 每个图例标签左侧的彩色/图案标记。...plt.show() 相同轴域内的多个图例 有时,在多个图例之间分割图例条目会更加清晰。 虽然直觉上的做法可能是多次调用legend()函数,但你会发现轴域上只存在一个图例。...除了用于复杂的绘图类型的处理器,如误差条,茎叶图和直方图,默认的handler_map有一个特殊的元组处理器(HandlerTuple),它简单地在顶部一一绘制给定元组中每个项目的句柄。...这对于所有艺术家都是默认的,因此不带任何参数调用legend(),并且没有手动设置标签会导致没有绘制图例。...为散点图/matplotlib.collections.PathCollection创建图例条目时,图例中的标记点数。

    1.6K10

    Matplotlib 可视化之图例与标签高级应用

    装饰物指的是你可以添加到一个图形上的所有额外元素,以美化它或使它更清晰。装饰物包括图例、注释、颜色条、文本等标准元素,但也可以专门设计自己的元素。...配置图例 想在可视化图形中使用图例,可以为不同的图形元素分配标签。 图例非常容易使用,只要求用户命名图。Matplotlib将自动创建一个包含每个图形元素的图例。...而下图中,用轴标签替换轴刻度标签,即在轴中间加上说明标签,为了使其更靠近轴,删除了可能与标签碰撞的中心刻度。此外,将标题其向右移动,并相应地移动图例框,将其放置在标题下方,并且使用一行两列的排列方式。...# 默认情况下,y 标签的 x 坐标和 x 标签的 y 坐标由刻度标签边界框确定, # 但是如果有多个轴,这可能会导致多个标签对齐不良。...需要设置网格的行数和列数。子图布局参数(例如,左,右等)可以选择性调整。 ConnectionPatch:用于在两点之间建立连接线。 参数:xyA: 它是x-y图上也称为点A的连接线的起点。

    1.8K60

    40000字 Matplotlib 实操干货,真的全!

    上图可见,plt.legend()函数绘制的图例线条与图中的折线无论风格和颜色都保持一致。...2.简单散点图 另一种常用的图表类型是简单散点图,它是折线图的近亲。不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...我们可以从上图中看出,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...plt.subplot:简单网格的子图表 将子图表的行与列对齐是一个很常见的需求,因此 Matplotlib 提供了一些简单的函数来实现它们。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    10.3K21

    40000字 Matplotlib 实操干货,真的全!

    折线图标签 本节最后介绍一下在折线图上绘制标签:标题、坐标轴标签和简单的图例。...参阅 Matplotlib 在线文档和这些函数的文档字符串可以获得更多的信息。 当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。...不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    7.9K30

    40000字 Matplotlib 实操干货,真的全!

    折线图标签 本节最后介绍一下在折线图上绘制标签:标题、坐标轴标签和简单的图例。...参阅 Matplotlib 在线文档和这些函数的文档字符串可以获得更多的信息。 当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。...不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    8K10

    11种 Matplotlib 科研论文图表实现 !!

    (3)折线图标签 本节最后介绍一下在折线图上绘制标签:标题、坐标轴标签和简单的图例。...不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...(1)选择设置图例的元素 正如我们前面例子所示,绘制的图例默认包括所有带标签的元素。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    28810

    学习Matplotlib看这一份笔记就够了!

    当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。Matplotlib 也内建了函数来快速创建图例。估计你也猜到了,通过plt.legend()函数可以实现这个需求。...上图可见,plt.legend()函数绘制的图例线条与图中的折线无论风格和颜色都保持一致。...2.简单散点图 另一种常用的图表类型是简单散点图,它是折线图的近亲。不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...我们可以从上图中看出,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    10.8K11

    全文 40000 字,最强(全) Matplotlib 实操指南

    折线图标签 本节最后介绍一下在折线图上绘制标签:标题、坐标轴标签和简单的图例。...参阅 Matplotlib 在线文档和这些函数的文档字符串可以获得更多的信息。 当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。...不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    6.2K30

    收藏!!!学习Matplotlib看这一份笔记就够了!

    当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。Matplotlib 也内建了函数来快速创建图例。估计你也猜到了,通过plt.legend()函数可以实现这个需求。...上图可见,plt.legend()函数绘制的图例线条与图中的折线无论风格和颜色都保持一致。...2.简单散点图 另一种常用的图表类型是简单散点图,它是折线图的近亲。不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...我们可以从上图中看出,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    8.3K20

    可能是全网最全的Matplotlib可视化教程

    折线图标签 本节最后介绍一下在折线图上绘制标签:标题、坐标轴标签和简单的图例。...参阅 Matplotlib 在线文档和这些函数的文档字符串可以获得更多的信息。 当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。...不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    8.6K10

    超全!40000字 Matplotlib 实战

    当一幅图中绘制了多条折线时,如果能够绘制一个线条对应的图例能让图表更加清晰。Matplotlib 也内建了函数来快速创建图例。估计你也猜到了,通过plt.legend()函数可以实现这个需求。...上图可见,plt.legend()函数绘制的图例线条与图中的折线无论风格和颜色都保持一致。...2.简单散点图 另一种常用的图表类型是简单散点图,它是折线图的近亲。不像折线图,图中的点连接起来组成连线,散点图中的点都是独立分布的点状、圆圈或其他形状。...我们可以从上图中看出,可以通过散点图同时展示该数据集的四个不同维度:图中的(x, y)位置代表每个样本的花萼的长度和宽度,散点的大小代表每个样本的花瓣的宽度,而散点的颜色代表一种特定的鸢尾花类型。...每个 Matplotlib 对象也被设计为其子对象的一个容器:例如figure对象中可以包含一个或多个axes对象,每个axes对象都依次包含着其他用来展示图表的内容对象。 刻度也不例外。

    7.9K30

    Python气象绘图教程(十四)

    ncol 图例列数,int值 borderpad 边框内边距 labelspacing 图例之间的垂直间距 handlelength 图例的句柄长度 handleheight 图例的句柄高度 handletextpad...三、图例的分类操作等 在前面,我们将每个图例分别注释了标签,在需要的时候,还可以进行分类操作。...四、如何绘制多个图例 在matplotlib中,由于legend命令的特性,无论plt.legend还是ax.legend,都只能在图表中添加一个图例,一般来说以最后一个legend命令绘制,前面都会被覆盖...但是科研图表存在需要多个图例的情况,如果确实需要绘制时,可以通过ax.add_artist()命令添加。仍然以上一小节的图为例。...最后,以ax.add_artist()添加到子图上: from matplotlib.legend import Legend legend2=Legend(ax,[scatter1,scatter2,

    3K51

    【数学建模】——matplotlib简单应用

    1.绘制带有中文标签和图例的正弦和余弦曲线 使用numpy创建自变量数组t。 计算正弦函数值s和余弦函数值z。 使用pylab绘制正弦和余弦曲线,并设置标签。...绘制散点图 使用numpy创建数据数组a和b。 使用scatter函数绘制散点图。 通过参数修改散点符号、大小、颜色和线宽。 生成随机数据,使用scatter绘制散点图,设置符号形状、大小和颜色。...使用pie函数绘制饼状图,设置标签、颜色和百分比格式。 使饼状图中的某些部分裂开,设置阴影和开始角度。 设置坐标轴刻度和标签。 设置坐标轴跨度和纵横比。...创建图形,使用subplot函数创建多个子图。 在每个子图中绘制曲线,设置颜色和样式。 限制y轴范围。...使用plot函数绘制正弦和余弦曲线。 设置图像标题,使用中文字体。 使用legend函数设置图例字体、标题、位置、背景色、边框颜色和列数。

    10210

    R绘图笔记 | 一般的散点图绘制

    3.其他散点图函数 除了上面的包和函数可以绘制散点图外,还有一些包也可以绘制复杂性的散点图。比如说car包中的scatterplot()函数和lattice包的xyplot()函数。...lty=1, lwd=2, col=col) legend # 逻辑词,当按组绘制散点图且为TRUE时图上显示图例;为FALSE则不绘制图例; grid # 逻辑词,为TRUE则绘制浅灰色背景网格; groups...ellipse.border.remove # 逻辑词,为TRUE,则删除椭圆边框线 mean.point # 逻辑词,为TRUE,则将分组平均点添加到绘图中 mean.point.size # 指定平均点大小的数值...star.plot # 逻辑词,为TRUE,则生成星图 star.plot.lty、star.plot.lwd # 星图的线型和线宽 label # 包含点标签的列的名称,也可以是长度=nrow(data...# 长度为2的数字向量,指定相关系数的x、y坐标,默认值为NULL cor.coef.size # 相关系数文字字体的大小 ggp # 不为NULL,则将点添加到现有绘图中 show.legend.text

    5.3K20

    Matplotlib库在Python数据分析中的应用

    它支持各种常见的图表类型,包括折线图、散点图、柱状图、饼图、等高线图等,还支持注释、标签、标题、图例等图形元素的添加和编辑。下面将逐个介绍Matplotlib库的常见功能和应用场景。2....as plt# 绘制多个子图fig, axes = plt.subplots(nrows=2, ncols=2)# 在第一个子图中绘制折线图x1 = [1, 2, 3, 4, 5]y1 = [2, 4..., 6, 8, 10]axes[0, 0].plot(x1, y1)axes[0, 0].set_title("Line Chart 1")# 在第二个子图中绘制散点图x2 = [1, 2, 3, 4,...5]y2 = [1, 3, 5, 7, 9]axes[0, 1].scatter(x2, y2)axes[0, 1].set_title("Scatter Plot 1")# 在第三个子图中绘制柱状图...利用Matplotlib库,我们可以绘制折线图、散点图、柱状图、饼图等各种类型的图表;还可以通过定制颜色、线型、标记、添加图例、注释等来美化图表;同时,Matplotlib还支持子图布局、直方图、热力图

    1K60

    Day7:R语言课程 (R语言进行数据可视化)

    1.设置数据框以进行可视化 在本课中需要制作与每个样本中的平均表达量相关的多个图,还需要使用所有可用的metadata来适当地注释图表。 观察rpkm数据。...ggscatter1 有了必须的映射,再为图片添加一些可选的映射,比如颜色。通过指定列标题来,按照基因型给点上色。自动使用一组默认颜色,不必指定。此外,ggplot2还自动绘制了图例!...ggscatter5 注意:可以使用example("geom_point")来探索可添加到绘图中的众多不同的映射和图层。滚动浏览不同的图,记住代码的修改方式。...添加图层xlab()和ylab(),改变x轴和y轴的标签。将这些图层添加到当前图中,x轴标记为“年龄(天)”,y轴标记为“平均表达量”。 使用ggtitle图层为绘图添加标题。...然后我们使用刚刚创建的ggplot散点图将图像绘制到设备上。

    6K10
    领券