首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在 Debian 中如何将用户添加到 Sudoers

第一件事就是将用户添加到 sudoers 文件。这个文件包含一系列规则,决定哪些用户或者群组可以获得 sudo 授权,和权限级别一样。第二个选项就是将用户添加到sudoers文件中的 sudo 组。...默认情况下,在 Debian 和它的衍生版本中,“sudo”组的成员获得 sudo 访问许可。...将用户添加到 sudo 用户组 给用户授权 sudo 权限的最快捷的方式就是将用户添加到“sudo”用户组。...将用户添加到 sudoers 文件 用户和用户组的 sudo 权限都定义在/etc/sudoers文件中。这个文件允许你提升访问权限和自定义安全策略。...这个文件的名字并不重要,但是在实践中我们通常根据用户名来命名该文件。

12.5K20

在 Ubuntu 中如何将用户添加到 Sudoers

这个文件包含了以下信息: 控制哪些用户和用户组被授予 sudo 权限 sudo 权限级别 第二个选项就是将用户添加到在sudoers文件中的 sudo 用户组。...一、将用户添加到 sudo 用户组 在 Ubuntu 上,最简单的授予一个用户 sudo 权限的方式就是将用户添加到“sudo”用户组。...二、将用户添加到 sudoers 文件 用户和用户组的 sudo 权限被定义在文件/etc/sudoers文件。将一个用户添加到这个文件,允许你自定义访问命令以及配置自定义安全策略。...你可以通过修改 sudoers 文件或者在/etc/sudoers.d目录下创建配置文件来配置用户的 sudo 访问权限。目录下的所有文件都会被包含在 sudoers 文件中。...文件的名称并不重要。通常的做法就是,文件名和用户名一样。 三、总结 在 Ubuntu 上授权用户 sudo 权限很简单,你只需要将用户添加到“sudo”用户组。

33.9K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何将MV中的音频添加到EasyNVR中做直播背景音乐?

    EasyNVR已经支持自定义上传音频文件,可以做慢直播场景使用,前两天有一个开发者提出一个问题:想把一个MV中的音频拿出来放到EasyNVR中去做慢直播。...经过我们的共同研究之后,终于想出一个办法,就是先将这个音乐提取出来,再添加进EasyNVR中。...我们采用的是ffmpeg命令行的方法拿到AAC数据,具体命令如下: ffmpeg -i input-video.mp4 -vn -acodec copy output-audio.aac 将获取的AAC...不得不说ffmpeg就是强大,ffmpeg是专门用于处理音视频的开源库,既可以使用它的API对音视频进行处理,也可以使用它提供的工具,如 ffmpeg,ffplay,ffprobe,来编辑你的音视频文件...如果大家对我们的开发及产品编译比较感兴趣的话,可以关注我们博客,我们会不定期在博客中分享我们的开发经验和一些功能的使用技巧,欢迎大家了解。

    4.1K40

    数据可视化(4)-Seaborn系列 | 分类图catplot()

    本篇是《Seaborn系列》文章的第4篇-分类图。...分类图 分类图catplot() 解析: catplot() 分类图(它是下面8种图的接口,下面八种图表均可通过指定kind参数来绘制) 1.stripplot() 分类散点图 2.swarmplot(...data 其他参数均为可选; data:是DataFrame类型的; x,y为数据中变量的名称(如上表,date,name,age,sex为数据字段变量名); row,col:数据中变量的名称 作用...diet',则在列的方向上显示,显示图的数量为diet列中对值去重后的数量) """ sns.catplot(x="time", y="pulse", hue="kind",col="diet", data...利用catplot()绘制柱状图 kind="count" 设置col_wrap一个数值,让图每行只显示数量为该数值的列,多余的另起一行显示 """ sns.catplot(x="alive", col

    5.2K00

    ☀️苏州程序大白一文从基础手把手教你Python数据可视化大佬☀️《❤️记得收藏❤️》

    seaborn as sns 数据关系可视化 下面我们使用seaborn最常用的方法relplot()实现散点图scatterplot()和线图lineplot()。...散点图 Scatter plots 首先可以引入seaborn中自带事例子数据集“tips”,这个数据集的属性有: 时间数据 week。...中有很多画散点图的方法其中一种是scatterplot(),使用方法是把数据集中的集合分配给方法中的属性,这样不同集合就会使用散点图中不同属性的样式展示出来如下面实例中的色调属性hue获取了数据集中的smoker...集合,这样集合中的数据差异就可以通过色调的不同展示出来,其他同理。...=2, inner="stick", kind="violin", split=True, data=tips); 合并图表 另外看一下如何将两个不同类型的图表合为一个,例如下面我们将

    97420

    Python Seaborn综合指南,成为数据可视化专家

    然后我们将使用seaborn在Python中为数据生成各种不同的可视化。 目录 什么是Seaborn? 为什么应该使用Seaborn而不是matplotlib?...相信我,这在数据科学中不是一件容易的事。 如果Matplotlib"试图让简单的事情变得简单,而让困难的事情变得可能",那么seaborn也尝试让一组定义良好的困难事情变得简单。...在本节中,我们将看到两个变量之间的关系。例子中的数据是已分类的(分为不同的组)。 我们将使用seaborn库的catplot()函数来绘制分类数据图。...使用Seaborn的箱线图 我们可以绘制的另一种绘图是箱线图 ,它显示了分布的三个四分位值以及最终值。箱图中的每个值都对应于数据中的实际观察值。...使用Seaborn绘制Heatmaps 现在让我们来谈谈我最喜欢的图表Heatmaps。Heatmaps中每个变量都表示为一种颜色。

    2.8K20

    seaborn从入门到精通03-绘图功能实现02-分类绘图Categorical plots

    在seaborn中,有几种不同的方法来可视化涉及分类数据的关系。类似于relplot()和scatterplot()或lineplot()之间的关系,有两种方法来创建这些图。...实际上在seaborn中有两种不同的分类散点图,第一种是stripplot(),stripplot()是catplot()中默认的“kind”,它使用的方法是用少量的随机“抖动jitter”来调整点在分类轴上的位置...这种图有时被称为“蜂群”,并通过在catplot()中设置kind="swarm"来激活swarmplot()在seaborn中绘制: sns.catplot(data=tips, x="day", y...在seaborn中,barplot()函数操作一个完整的数据集,并应用一个函数来获得估计值(默认取平均值)。...在seaborn中,使用countplot()函数很容易做到这一点: sns.catplot(data=titanic, x="deck", kind="count", palette="ch:.25

    38820

    Django 应用安装脚本 – 如何将应用添加到 INSTALLED_APPS 设置中

    每当你创建或安装一个新的应用程序时,你需要将其添加到 INSTALLED_APPS 中,以便 Django 项目可以识别并使用该应用程序。...方法一:手动添加到列表中 你可以手动将应用程序名称添加到 INSTALLED_APPS 设置的列表中。假设你安装了一个名为 myapp 的应用程序。...这将更新项目的 settings.py 文件并将 myapp 添加到 INSTALLED_APPS 设置中。 检查 settings.py 文件,确保 myapp 已经被添加到正确位置。...通过使用脚本添加应用程序,你可以快速、简便地将多个应用程序添加到 INSTALLED_APPS 设置中。...总结 本文介绍了如何将应用程序添加到 Django 项目的 INSTALLED_APPS 设置中。

    12110

    如何将HTML字符转换为DOM节点并动态添加到文档中

    将HTML字符转换为DOM节点并动态添加到文档中 将字符串动态转换为DOM节点,在开发中经常遇到,尤其在模板引擎中更是不可或缺的技术。...字符串转换为DOM节点本身并不难,本篇文章主要涉及两个主题: 1 字符串转换为HTML DOM节点的基本方法及性能测试 2 动态生成的DOM节点添加到文档中的方法及性能测试 本文的示例:...createDocumentFragment方法和createNode方法,在这轮测试中不相上下。下面我们看看将生成的DOM元素动态添加到文档中的方法。...1.2.0 批量添加节点 被动态创建出来的节点大多数情况都是要添加到文档中,显示出来的。下面我们来介绍并对比几种常用的方案。...1.2.1 直接append 直接append方法,就是生成一个节点就添加到文档中,当然这会引起布局变化,被普遍认为是性能最差的方法。

    7.6K20

    这3个Seaborn函数可以搞定90%的可视化任务

    其中一个流行的是Seaborn,这是一个用于Python的统计数据可视化库。 我最喜欢Seaborn原因是它巧妙的语法和易用性,通过Seaborn我们只用3个函数就可以创建普通的图表。...直方图将数值变量的取值范围划分为离散的容器,并计算每个容器中的数据点(即行)的数量。让我们画一个总销售额的柱状图。...Catplot 使用catplot函数创建分类图,如箱形图、条形图、带状图、小提琴图等。总共有8个不同的分类图可以使用catplot函数生成。 箱形图用中位数和四分位数表示变量的分布。...catplot功能下的另一种类型是小提琴图。这是一种plto和kde的组合。因此,它提供了一个变量分布的概述。 例如,我们可以为前面示例中的strip plot所使用的列创建小提琴图。...C的小提琴的顶部比其他两支略粗。 总结 relplot、displot和catplot函数可以生成14个不同的图,这些图几乎涵盖了我们在数据分析和探索中通常使用的所有可视化类型。

    1.3K20

    数据科学篇| Seaborn库的使用(四)

    Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。...安装 Seaborn 要安装最新版本的seaborn,您可以使用pip: pip install seaborn 也可以使用conda以下方法安装发布的版本: conda install seaborn...分类数据绘图 catplot将x的数据分类出来 import seaborn as sns import matplotlib.pyplot as plt sns.set(style="ticks",...重点:绘制双变量分布 在seaborn中执行此操作的最简单方法是使用该jointplot()函数,该函数创建一个多面板图形,显示两个变量之间的双变量(或联合)关系以及每个变量在单独轴上的单变量(或边际)...这将创建一个轴矩阵,并显示DataFrame中每对列的关系 iris = sns.load_dataset("iris") sns.pairplot(iris) ?

    1.2K10

    Python数据分析 | seaborn工具与数据可视化

    根据图形的适应场景,Seaborn 的绘图方法大致分类 6 类,这 6 大类下面又包含不同数量的绘图函数: 关联图——relplot 类别图——catplot 分布图——distplot、kdeplot...Seaborn 中的 API 分为 Axes-level 和 Figure-level 两种:Axes-level 的函数可以实现与 Matplotlib 更灵活和紧密的结合,而 Figure-level...例如,上方 relplot 绘制的图也可以使用 lineplot 函数绘制,只要取消 relplot 中的 kind 参数即可。...中还存在大量已大些字母开始的类,例如 JointGrid,PairGrid 等。...除此之外,Seaborn 官方文档 中还有关于 样式控制 和 色彩自定义 等一些辅助组件的介绍。对于这些 API 的应用没有太大的难点,重点需要勤于练习。

    1.9K41

    数据探索与分析中必不可少的Seaborn库

    Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。...安装 Seaborn 要安装最新版本的seaborn,您可以使用pip: pip install seaborn 也可以使用conda以下方法安装发布的版本: conda install seaborn...分类数据绘图 catplot将x的数据分类出来 import seaborn as sns import matplotlib.pyplot as plt sns.set(style="ticks",...重点:绘制双变量分布 在seaborn中执行此操作的最简单方法是使用该jointplot()函数,该函数创建一个多面板图形,显示两个变量之间的双变量(或联合)关系以及每个变量在单独轴上的单变量(或边际)...这将创建一个轴矩阵,并显示DataFrame中每对列的关系 iris = sns.load_dataset("iris") sns.pairplot(iris) ?

    97910

    可视化神器Seaborn的超全介绍

    tips数据集说明了组织数据集的“整洁”方法。如果您的数据集以这种方式组织,您将从seaborn中获得最大的好处,下面将对此进行更详细的说明 4. 我们绘制了具有多个语义变量的分面散点图。...专业分类图 标准散点图和线状图显示数值变量之间的关系,但许多数据分析涉及分类变量。在seaborn中有几种专门的绘图类型,它们经过了优化,用于可视化这类数据。可以通过catplot()访问它们。...与relplot()类似,catplot()的思想是公开一个通用的面向数据集的API,该API在一个数值变量和一个(或多个)分类变量之间关系的不同表示上进行泛化。...或者你可以在每个嵌套的类别中显示唯一的平均值和它的置信区间: sns.catplot(x="day", y="total_bill", hue="smoker", kind="bar...可视化数据集结构 在seaborn中还有另外两种图形级别的函数,可用于对多个图块进行可视化。它们都是面向数据集结构的。

    2.2K30

    数据可视化(13)-Seaborn系列 | 点图pointplot()

    点图 点图表示通过散点图点的位置对数值变量的中心趋势的估计。 点图用于集中在一个或多个分类变量的不同级别之间的比较,有时比条形图更有用。 注:点图只显示平均值(或其他估计值)。...n_boot:int 计算置信区间时使用的引导迭代次数 markers:字符串或字符串列表 作用:标记符号 案例教程 import seaborn as sns import matplotlib.pyplot...as plt # 设置样式风格 sns.set(style="darkgrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例1: 利用catplot(...matplotlib.pyplot as plt # 设置样式风格 sns.set(style="darkgrid") # 构建数据 tips = sns.load_dataset("tips") """ 案例8: 使用catplot...()实现pointplot()的效果(通过设置kind="point") """ sns.catplot(x="sex", y="total_bill", hue="smoker

    2.8K00
    领券