Scikit Learn是一个流行的机器学习库,而Google Cloud ML是Google云平台上的机器学习服务。要将Scikit Learn的OneVsRestClassifier预测方法输出转换为Google Cloud ML的密集数组,可以按照以下步骤进行:
import numpy as np
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from google.cloud import storage
from google.cloud import ml
# 加载训练数据
X_train = np.load('train_data.npy')
y_train = np.load('train_labels.npy')
# 加载模型
model = OneVsRestClassifier(SVC())
model.fit(X_train, y_train)
# 加载测试数据
X_test = np.load('test_data.npy')
# 进行预测
y_pred = model.predict(X_test)
# 转换为密集数组
dense_array = y_pred.toarray()
# 设置Google Cloud Storage的bucket和文件名
bucket_name = 'your_bucket_name'
file_name = 'dense_array.npy'
# 上传密集数组到Google Cloud Storage
client = storage.Client()
bucket = client.get_bucket(bucket_name)
blob = bucket.blob(file_name)
blob.upload_from_filename('dense_array.npy')
# 设置Google Cloud ML的模型和版本
project_id = 'your_project_id'
model_name = 'your_model_name'
version_name = 'your_version_name'
# 创建Cloud ML客户端
ml_client = ml.Client(project_id)
# 获取模型版本
model_version = ml_client.get_model(model_name).versions.get(version_name)
# 设置预测请求
input_data = {'dense_array': 'gs://{}/{}'.format(bucket_name, file_name)}
output_path = 'gs://{}/{}'.format(bucket_name, 'predictions')
prediction_input = ml.Input(input_data, 'jsonl')
prediction_output = ml.Output(output_path, 'jsonl')
# 发送预测请求
job = model_version.predict(prediction_input, output=prediction_output)
job.wait()
这样,你就成功将Scikit Learn的OneVsRestClassifier预测方法输出转换为Google Cloud ML的密集数组,并进行了预测。请注意,上述代码中的"your_bucket_name"、"your_project_id"、"your_model_name"和"your_version_name"需要替换为你自己的实际值。
领取专属 10元无门槛券
手把手带您无忧上云