对于时间序列分析,有两种数据格式: ts (时间序列)和 xts (可扩展时间序列)。前者不需要时间戳,可以直接从向量转换。后者非常重视日期和时间,因此只能使用日期和/或时间列来定义。我们涵盖了基本的时间序列模型,即 ARIMA、GARCH 和 VAR。
在数据分析中,往往会遇到各种复杂的数据处理操作:分组、排序、过滤、转置、填充、移动、合并、分裂、去重、找重、填充等操作。这时候R语言就是一个很好的选择:R可以高效地、优雅地解决数据处理操作。(本章节为R语言入门第二部分总结篇:数据操作)
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的。
背景:下载某数据库的数据做数据分析,发现下载的数据结构是多层list嵌套,与平时遇到的数据表(data.frame)不同,并且第二层list的名称是本人需要的变量。
list是R语言中包容性最强的数据对象,几乎可以容乃所有的其他数据类型。 但是包容性最强也也意味着他对于内部子对象的类型限制最少,甚至内部可以存在递归结构,这样给我们提取数据带来了很大的困难。 如果你对R语言的list结构非常熟悉,又熟练控制流等函数的操作,自然可以通过构建循环来完成目标数据的提取。但是在数据量大、结构及其复杂的情形下,自建循环无论是性能还是代码量上都很不经济。 好在确实有开发者在针对list数据结构进行操作上的优化,任坤老师的大作——rlist就是一个强大的list解析神器,它可以让我们像
哈喽,我是学习生物信息学的阿榜!非常感谢您能够点击进来查看我的笔记。我致力于通过笔记,将生物信息学知识分享给更多的人。如果有任何纰漏或谬误,欢迎指正。让我们一起加油,一起学习进步鸭? 这份思维导图可以
如何将存储在磁盘上的邻接矩阵输入到 R 程序中,是进行社交网络分析的起点。在前面的章节中已经介绍了基本的数据结构以及代码结构,本章将会面对一个实质性问题,学习如何导入一个图以及计算图的一些属性。
前 言 大多数受欢迎的编程语言都有个共同点——他们都是“开源”。开源是一种分散的开发模式,它基于社区参与。社区成员推动这种编程语言的发展,所得成果向所有人开放。 这些开源语言(如 R、C++、,C#、Java、PHP、Python 和 Ruby 等)不断发展和创新的主要原因就是社区参与。在数据科学中,R 就是最受欢迎的语言之一。它受欢迎的主要原因就是数据科学社区 R 语言使用者的不断贡献和支持。他们贡献的包形成了 R 编程语言的基础。 虽然大家在社区内共享了许多关于如何使用 R 解决问题的教程,但是却较少关
要纵向合并两个数据框,可以使用 rbind( )函数。被合并的两个数据框必须拥有相同的变量,这种合并通常用于向数据框中添加观测。例如:
除此之外,还有两种不常见的:参见:https://www.cnblogs.com/mfrank/p/14051513.html
列表是一种特别的对象集合,它的元素也由序号(下标)区分,但是各元素的类型可 以是任意对象,不同元素不必是同一类型。元素本身允许是其它复杂数据类型,比如,列表 的一个元素也允许是列表。例如:
tibble 是一种简单数据框,它对传统数据框的功能进行了一些修改,其所提供的简单数据框更易于在 tidyverse 中使用。
Tidyverse 是 Rstudio 公司推出的专门使用 R 进行数据分析的一整套工具集合,里面包括了readr,tidyr, dplyr,purrr,tibble,stringr, forcats,ggplot2 等包。https://github.com/tidyverse/
R语言 控制流:for、while、ifelse和自定义函数function|第5讲
在数据分析过程中,不同的软件通常对数据格式有一定的要求,例如R语言中希望导入的数据最好是长格式数据而不是宽格式数据,而SPSS软件经常使用宽格式数据。平时数据分析的时候,无法保证导入的数据一定是什么格式,因此需要了解长宽格式数据之间如何相互转换。
作者:张丹(Conan), 程序员Java,R,Javascript 原文:http://blog.fens.me/finance-chase-sell/#comment-4627 久经股市的老股民,通常都会使用一种常见的交易策略,追涨杀跌交易法。追涨杀跌法,是股市操作的一个重要技巧,就是在股市上涨时买入股票,股市下跌时卖出股票。如果操作得当是很好的赢利手段,在中国股市2015年上半年的牛市中,追涨杀跌交易法就是交易神器法门。 目录 什么是追涨杀跌? 追涨杀跌的建型和实现 模型优化 1. 什么是追涨杀跌?
整理数据的本质可以归纳为:对数据进行分割(Split),然后应用(Apply)某些处理函数,最后将结果重新组合(Combine)成所需的格式返回,简单描述为:Split - Apply - Combine。plyr包是Hadley Wickham为解决split – apply – combine问题而写的一个包。使用plyr包可以针对不同的数据类型,在一个函数内同时完成split – apply – combine三个步骤。plyr包的主函数是**ply形式的,函数名的第一个字符代表输入数据的类型,第二个字符代表输出数据的类型,其中第一个字符可以是(d、l、a),第二个字母可以是(d、l、a、_ ),不同的字母表示不同的数据格式,d表示数据框格式,l表示列表,a表示数组,_则表示没有输出。
设计目的:进行地理文件的加载、数据转换及基础处理,将地理信息数据与业务数据的融合(sp与sf数据模型),添加地理标签,应用地理坐标轴,最终完成一个地理空间可视化的小demo。
上一次介绍了Python绘制svg的优秀可视化库Pygal,今天我们介绍一下一个优秀的R地图可视化绘制包-linemap包,顾名思义,该包是是为了绘制由线组成的地图,其官网如下:https://github.com/rCarto/linemap。该包主要拥有两个绘图函数:linemap()和 getgrid(),其中:linemap()使用网格数据的数据框显示由线组成的地图。getgrid()将一组多边形(sf对象)转换为绘制linemap()的合适数据框(data.frame)。
为了汇总结果,DESeq2 中一个方便的函数是 summary()。它与用于检查数据帧的函数同名。当使用 DESeq 结果表作为输入调用此函数时,将使用默认阈值 padj < 0.1 汇总结果。但是,由于我们在创建结果表阈值时将 alpha 参数设置为 0.05:FDR < 0.05(即使输出显示 p 值 < 0.05,也使用 padj/FDR)。让我们从 OE 与对照结果开始:
读取CSV文件最好的方法是使用read.table函数,许多人喜欢使用read.csv函数,该函数其实是封装的read.table函数,同时设置read.table函数的sep参数为逗号(",")。read.table函数返回的结果为data.frame。
要使Name列中的每个字符串都变为小写,选择Name列(参见数据选择教程),添加str访问器并应用lower方法。因此,每个字符串都被逐个转换。
“读书会是一种在于拓展视野、宏观思维、知识交流、提升生活的活动。PPV课R语言读书会以“学习、分享、进步”为宗旨,通过成员协作完成R语言专业书籍的精读和分享,达到学习和研究R语言的目的。读书会由辅导老师或者读书会成员推荐书籍,经过讨论确定要读的书,每个月读一本书且要精读,大家一起分享。” 第二章 创建数据集 本章概要 1探索R数据结构 2使用数据编辑器 3数据导入 4数据集标注 本章所介绍内容概括如下。 两个方面的内容。 方面一:R数据结构 方面二:进入数据或者导入数据到数据结构 理解数据集 一个数据
tidyverse就是Hadley Wickham将自己所写的包整理成了一整套数据处理的方法,包括ggplot2、dplyr、tidyr、readr、purrr、tibble、stringr、forcats。出版有《R for Data Science》(中文版《R数据科学》),这本书详细介绍了tidyverse的使用方法。
转录因子或表观遗传标记可能作用于按共同生物学特征(共享生物学功能、RNAseq 实验中的共同调控等)分组的特定基因组。
数据框类似矩阵,有行列两个维度。数据框允许不同的列可以包含不同的类型数据。注意数据框可以看成每个组将长度相同的列表。
虽然这些模型可以证明具有高度的准确性,但它们有一个主要缺点 - 它们通常不会解释“冲击”或时间序列的突然变化。让我们看看我们如何使用称为卡尔曼滤波器的模型来解决这个问题。
词云图中的每个字的大小与出现的频率或次数成正比,词云图的统计意义不是特别大,主要是为了美观,用于博客和网站比较常见。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说R语言笔记完整版[通俗易懂],希望能够帮助大家进步!!!
本文作者:任坤,厦门大学王亚南经济研究院金融硕士生,研究兴趣为计算统计和金融量化交易,pipeR,learnR,rlist等项目的作者。
公众号后台记录了发表过文章的各项阅读指标包括:内容标题,总阅读人数,总阅读次数,总分享人数,总分享次数,阅读后关注人数,送达阅读率,分享产生阅读次数,首次分享率,每次分享带来阅读次数,阅读完成率。
数据框来源主要包括用代码新建(data.frame),由已有数据转换或处理得到(取子集、运算、合并等操作),读取表格文件(read.csv,read.table等)及R语言内置数据
一般的 R 函数只能接受固定类型的数据,例如绘制热图,输入数据必须是数值型向量,数据框则不行,线性回归分析中,输入数据必须为一个数据框。因此,需要熟悉各种数据类型之间的转换。此外,在做数据转换的过程中,还要记住,有些数据只能单方向进行转换,而不能相互转换,例如部分数据框无法转换为数值型矩阵。
工作流程完成后,您现在可以使用基因计数表作为 DESeq2 的输入,使用 R 语言进行统计分析。
注意:一定要经常检查数据,注意读取之后是数据框还是矩阵,取完列里面是数值还是字符,处理完是什么类型等等
数据结构的塑造是数据可视化前重要的一环,虽说本公众号重心在于数据可视化,可是涉及到一些至关重要的数据整合技巧,还是有必要跟大家分享一下的。 在可视化前的数据处理技巧中,导入导出、长宽转换已经跟大家详细的介绍过了。 今天跟大大家分享数据集的合并与追加,并且这里根据所依赖函数的处理效率,给出诺干套解决方案。 数据合并操作涉及以下几个问题: 横向合并; 1. 是否需要匹配字段 1.1 匹配字段合并 1.1.1 主字段同名 1.1.2 主字段不同名 1.2 无需匹配字段合并 纵向合并:(情况比较简单,列
1)向量(vector):用于存储数值型、字符型或逻辑型数据的一维数组。函数c()用来创建向量:
each和times的区别是times输出的是abcdabcdabcd,each输出的是aaabbbcccddd
作者 张丹(Conan) 来源 http://blog.fens.me Rquant前言最近有读者要求公众号推送几篇关于R语言量化投资的内容。今天推送第一篇。后续我们会推出公众号编辑部更好的原创作品,关于R语言量化投资。 久经股市的老股民,通常都会使用一种常见的交易策略,追涨杀跌交易法。追涨杀跌法,是股市操作的一个重要技巧,就是在股市上涨时买入股票,股市下跌时卖出股票。如果操作得当是很好的赢利手段,在中国股市2015年上半年的牛市中,追涨杀跌交易法就是交易神器法门。 1. 什么是追涨杀跌? 追涨杀跌是金
前面我们讲了R批量下载B细胞和T细胞受体VDJ序列文件,那么如何将这些fasta序列读到R里面,方便后面处理呢?今天小编就给大家演示一下如何利用R将fasta序列转成data.frame。我们就用上次下载到的BCR的VDJ序列为例,7个fasta文件存放在BCR_seq文件夹中。
作者:唐源 摘自:统计之都(微信ID CapStat) 唐源,目前就职于芝加哥一家创业公司,曾参与和创作过多个被广泛使用的 R 和 Python 开源项目,是 ggfortify,lfda,metric-learn 等包的作者,也是 xgboost,caret,pandas 等包的贡献者。(喜欢爬山和烧烤 ) ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以 g
约等于表格:1.数据框不是一个具体文件,只是R语言内部的一个数据;2.数据框每一列只能有一种数据类型
本文作者: 唐源,目前就职于芝加哥一家创业公司,曾参与和创作过多个被广泛使用的 R 和 Python 开源项目,是 ggfortify,lfda,metric-learn 等包的作者,也是 xgboost,caret,pandas 等包的贡献者。(喜欢爬山和烧烤 ) ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以 ggplot 的风格画出好看的图,大大地提高了工
## 0、Rstudio界面介绍及快捷键 # 运行当前/选中行 ctrl+enter # 中止运行 esc # 插入 <- Alt+- # 插入 %>% Ctrl+Shift+M # 快捷注释(支持多行选中)ctrl+shift+c 快捷注释后,如取消注释ctrl+shift+c # Rstudio自动补全 tab x <- 5 ## 1、生成数据 set.seed(0) set.seed(1) c() seq() #生成等差数据 rep() #重复生成数据 rep(1:10,
前面得到的6个发育时期和4个分群,而且还可视化了一些marker基因,那么现在就要对这4群细胞进行差异分析
这天,接到了生信技能树创始人jimmy老师的一个任务,要重复一篇CELL文章中的一个图示:
计算Fisher线性判别函数。 首先将数据集 、 、 、 、和合并协方差阵 输入:
领取专属 10元无门槛券
手把手带您无忧上云