首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    DSST详解

    有一段时间没有看tracking了,前面一个月老师没有找,我也没有看文章,主要去看c++和cs231n去了。上周一老师找了我一次,于是赶紧把tracking又拾起来,把老师给的视频在前面的代码上跑了下,这周又看了篇新论文。 最开始的应该是MOOSE,作者没有给源码,所以论文理解得并不是很透彻,CSK以及KCF/DCF都是仔细研究了源码的,自认为还算比较了解了,接下来的CN,其实了解了KCF/DCF就很简单了,无非是另一种多特征的融合,融合方式都差不多。 昨天开始看DSST,只看了前面的部分,后边的实验没有怎么看,又去看了下matlab的源码,代码结构很清晰,因为框架还是CSK得大框架,结合作者的注释很快就看完了,做个整理。 MOOSE paper 是跟踪领域相关滤波的第一篇文章,开创性意义。 CSK paper 利用循环矩阵解决了训练量的问题,不用在进行随机仿射来得到样本。这个是单通道的, 作者只使用了灰度信息。 KCF/DCF paper 和CSK是同一个作者,和CSK的改进很小,主要贡献和CSK相比在于提供了一种把多通道特征融合进相关滤波框架的方法。 CN paper 和KCF/DCF是同一时期的,不同的是用了颜色通道,论文里作者比较了各种颜色空间的表现。 DSST paper DSST解决了另外一个关键问题,那就是尺度更新。 这5篇文章是相关滤波的基础,今天这里主要写一下DSST的论文思路。

    03
    领券