take a look at an example of vector-Jacobian product: x = torch::randn(3, torch::requires_grad());...y = x * 2; while (y.norm().itemdouble>() < 1000) { y = y * 2; } std::cout std..., pass the vector to ``backward`` as argument: auto v = torch::tensor({0.1, 1.0, 0.0001}, torch::kFloat...::Tensor forward(AutogradContext *ctx, torch::Tensor tensor, double constant) { // ctx is a context...< '\n'; // Simply pass the vector to backward as argument: auto v = torch::tensor({0.1, 1.0, 0.0001
/cpu/libtorch-shared-with-deps-latest.zip unzip libtorch-shared-with-deps-latest.zip # 配置环境(将PATH路径替换为自己的...创建张量tensor示例: #include #include torch/torch.h> int main() { // 创建一个(2,3)张量 torch...::Tensor tensor = torch::zeros({2, 3}); std::cout tensor std::endl; std::cout #include torch/script.h> #include torch/torch.h> #include vector> int main()...std::vectortorch::jit::IValue> x; x.push_back(torch::ones({1, 1, 28, 28})); at::Tensor output
下面是转换代码,总体原理是将 tensor 转换为二进制数据,再在 C++ 里面读入。...在 C++ 中的调用示例如下: #include #include torch/torch.h> std::vector get_the_bytes(std::string...filename) { std::ifstream input(filename, std::ios::binary); std::vector bytes(...(); return bytes; } int main() { std::vector f = get_the_bytes("my_tensor_cpu.pt");...torch::IValue x = torch::pickle_load(f); torch::Tensor my_tensor = x.toTensor(); std::cout <<
::chrono::system_clock::now(); std::chrono::durationdouble> elapsed = toc - tic; // 计算并输出进度百分比...int step = 0; for(auto t: timesteps){ auto tic = std::chrono::system_clock::now(); double cond_scale...::chrono::system_clock::now(); std::chrono::durationdouble> elapsed = toc - tic; std::cout vectorstd::string> init_names; std::vector initializer_data; for(auto& tensor: initializer...std::vector shape(tensor.dims_size(), 0); for(int i = 0; i tensor.dims_size
导读 本文主要讲解如何将pytorch的模型部署到c++平台上的模型流程,按顺序分为四大块详细说明了模型转换、保存序列化模型、C ++中加载序列化的PyTorch模型以及执行Script Module。...方法二:Scripting 直接在Torch脚本中编写模型并相应地注释模型,通过torch.jit.script编译模块,将其转换为ScriptModule。...解决:同上 eg3. requires_grad参数只在torch.tensor中支持,torch.ones/torch.zeros等不可用 eg4. tensor.numpy() eg5. tensor.bool...() 解决:tensor.bool()用tensor>0代替 eg6. self.seg_emb(seg_fea_ids).to(embeds.device) 解决:需要转gpu的地方显示调用.cuda...一个简单的示例如下: // Create a vector of inputs. std::vectortorch::jit::IValue> inputs; inputs.push_back(torch
前向传递 接下来我们可以将整个前向传递移植到 C++中: #include vector> std::vectorTensor> lltm_forward( torch::Tensor...declarations std::vectortorch::Tensor> lltm_cuda_forward( torch::Tensor input, torch::Tensor...weights, torch::Tensor bias, torch::Tensor old_h, torch::Tensor old_cell); std::vectortorch...(x) std::vectortorch::Tensor> lltm_forward( torch::Tensor input, torch::Tensor weights, torch...目前这些类型是:torch::Tensor、torch::Scalar、double、int64_t和这些类型的std::vector。
([0]), torch.Tensor([1]))) print(foo(torch.Tensor([1]), torch.Tensor([0]))) graph(%x.1 : Tensor,...script 直接解析你的 PyTorch代码,通过语法分析解析你的逻辑为一棵语法树,然后转换为中间表示 IR。..._jit_script_compile查看如何将这样的 ast 树转化为 IR....std::vector& properties, const std::vector& propResolvers,...const std::vector& definitions, const std::vector& defResolvers
explicit Reducer( std::vectorstd::vectorTensor>> replicas, std::vectorstd::vectorstd::vectorstd::vectorstd::shared_ptrtorch::autograd::Node>>> grad_accumulators_; // 对应的 index...::vectorstd::pairstd::shared_ptrtorch::autograd::Node>>> hooks_; std::vectorstd::vectorstd::vectorstd::shared_ptrtorch::autograd::Node>>> grad_accumulators_; 具体如下图,variable1...) { std::unordered_settorch::autograd::Node*> seen; std::vectortorch::autograd::Node*> queue;
Reducer::Reducer( std::vectorstd::vectorTensor>> replicas, std::vectorstd::vectortensor: at::Tensor, op: torch._C....::vectorTensor>>& inputTensors = c10::nullopt); bool stop_; std::mutex pgMutex_; std::thread...struct WorkEntry { explicit WorkEntry( std::vectorTensor>* srcPtr, std::vectorstd::vectorTensor>()), run(std::move(run)) { if (srcPtr) { src = *srcPtr
try { torch_module = torch::jit::load("my_module.pt"); } catch (const c10::Error& e) { std:...:cerr std::endl; return -1; } // make inputs std::vector vec(9); std::vectortorch::jit::IValue> torch_inputs; torch::Tensor torch_tensor = torch...(torch_inputs); } catch (const c10::Error& e) { std::cerr std:...(z, 1), x) #替换为: return x if self.training else torch.cat(z, 1) @staticmethod
double intercept; public: // 训练模型 void train(const std::vectordouble>& x, const std::vector...predict(double x) { return slope * x + intercept; } }; int main() { std::vectordouble...> x = {1, 2, 3, 4, 5}; std::vectordouble> y = {2, 4, 6, 8, 10}; LinearRegression lr; lr.train...i) = 0.5; } std::vectorstd::pairstd::string, Tensor>> inputs = { {"input_node_name...", input_tensor} }; // 定义输出节点 std::vectorTensor> outputs; std::string output_node_name
0x02 Python 调用过程 2.1 调用 我们首先来到了 torch/_tensor.py,这里有两个函数可以计算梯度,我们选取 backward 来看看。...using tensor_list = std::vectorTensor>; using variable_list = std::vector; using edge_list...= std::vector; using saved_variable_list = std::vector; using IndexRange = std:...::vector; // using edge_list = std::vector; edge_list roots; // 就是反向传播的起点(根节点)...Python 的 grad_tensors 被转换为 C++ 的 grads。 Python 的 inputs 被转换为 C++ 的 output_edges。
std::vectorstd::vector> compute_bucket_assignment_by_size( const std::vectorTensor>...())); TORCH_INTERNAL_ASSERT(tensors.size() > 0); std::vectorstd::vector> result; result.reserve...void Reducer::prepare_for_backward( const std::vectortorch::autograd::Variable>& outputs) { std...) { std::unordered_settorch::autograd::Node*> seen; std::vectortorch::autograd::Node*> queue;...RECORD_FUNCTION( "torch.distributed.ddp.reducer::search_unused_parameters", std::vector
std::vectordouble>>& data, int k) { // 随机初始化聚类中心 std::vectorstd::vectordouble>> centroids...(std::vectorstd::vectordouble>>& features, std::vectordouble>& labels, std::vectordouble>& weights...::vectorstd::vectordouble>> preprocessTrafficData(const std::vectorstd::vectordouble>>& raw_data)...status.ok()) { return std::vectordouble>(); } // 解析输出 auto output_tensor = outputs...[0].flat(); std::vectordouble> predictions(output_tensor.size()); for (int i = 0; i <
std::vectordouble>& mean, const std::vectordouble>& log_var) { std::vectordouble> std_dev...::vectorstd::vectordouble>> dot_product(const std::vectorstd::vectordouble>>& Q, const std::vector...::vectorstd::vectordouble>> attention(const std::vectorstd::vectordouble>>& Q, const std::vectorstd::vectordouble>>& K, const std::vectorstd::vectordouble>>& V) { std::vectorstd::vectordouble...::vectorstd::vectordouble>> Q = {{1.0, 2.0}, {3.0, 4.0}}; std::vectorstd::vectordouble>> K =
::vectorstd::vectorTensor>> model_replicas) { size_t i = 0; for (const auto& t : model_replicas...std::vectorTensor> bucket_tensors_; // The vector with a single flattened tensor containing the...std::vectorTensor> flat_tensor_; private: // The broadcast work that is kicked off upon construction...std::vectorstd::vector> compute_bucket_assignment_by_size( const std::vectorTensor>...())); TORCH_INTERNAL_ASSERT(tensors.size() > 0); std::vectorstd::vector> result; result.reserve
Reducer::Reducer( std::vectorstd::vectorTensor>> replicas, // 张量 std::vectorstd::vector...if (expect_sparse_gradients_.empty()) { expect_sparse_gradients_ = std::vectorstd::vector>...std::vectorTensor> bucket_views_in :提供了从输入角度在 contents 之中查看具体梯度的方法。...std::vectorTensor> bucket_views_out :提供了从输入角度在 contents 之中查看具体梯度的方法。...关于 std::vectorTensor> bucket_views_in 和 std::vectorTensor> bucket_views_out 的进一步说明: 这两个变量提供在
struct TORCH_API Node : std::enable_shared_from_this { public: std::vectorstd::unique_ptr<...具体代码如下: Reducer::Reducer( std::vectorstd::vectorTensor>> replicas, // 张量 std::vectorstd...explicit GradBucket( size_t index, const at::Tensor& tensor, const std::vectorstd::vector offsets_; std::vector lengths_; std::vector sizes_vec...::vectorTensor> local_used_maps_; // autograd_hook中会设置,对应论文中的 std::vectorTensor> local_used_maps_dev
::vector &input, std::vector &output, int type) { //根据score对候选框进行 sort 排序操作...; }); int box_num = input.size(); std::vector merged(box_num, 0); for (int i = 0;...i < box_num; i++) { if (merged[i]) continue; std::vector buf;...::vector &bbox_collection, tensor_t scores, tensor_t boxes) { float* scores_blob = ( float...= get_graph_tensor(graph, boxes.c_str()); std::vector bbox_collection; //结束计时,然后计算推理时间
爱因斯坦求和约定 爱因斯坦求和约定(einsum)提供了一套既简洁又优雅的规则,可实现包括但不限于:向量内积,向量外积,矩阵乘法,转置和张量收缩(tensor contraction)等张量操作,熟练运用...将维度对齐之后的输入张量相乘,然后根据求和索引累加 */ Tensor einsum(std::string equation, TensorList operands) { // .........保存每个输入张量对应的字符数组 std::vectorstd::vector> op_labels(num_ops); std::size_t curr_op = 0; for...时候的维度映射 std::vector perm_shape(perm_index, -1); Tensor operand = operands[i]; /...)) { Tensor operand = permuted_operands[i]; // 新建 vector 用于保存求和索引 std::vector sum_dims
领取专属 10元无门槛券
手把手带您无忧上云