前两节我们介绍串口驱动的框架和tty core部分。这节我们介绍和硬件紧密相关的串口驱动部分。
写这篇文章的原因:因为在linux开发串口应用的时候,遇到了问题,让遇到相同问题的人少走点弯路:
串口调试主要有 根据/proc系统信息确认串口状态,stty命令,编程调试 三种调试方法,下面我们分别具体介绍下。
终端IO有两种不同的工作模式: (1)规范模式输入处理。终端输入以行为单位进行处理 (2)非规范模式输入处理。输入字符不组成行
printf("You pressed '%c'!/n", getchar());
Go语言在net/http包中提供了一个快捷方法,可用于发出简单的GET请求。使用这个方法意味着不需要考虑如何配置HTTP客户端以及如何设置请求报头。如果只是要从远程网站获取一些数据,那么默认配置完全够用。
RS-232是美国电子工业联盟(EIA)制定的串行数据通信的接口标准,原始编号全称是EIA-RS-232(简称232,RS232)。它被广泛用于计算机串行接口外设连接。 RS-232C标准,其中EIA(Electronic Industry Association)代表美国电子工业联盟,RS(Recommended standard)代表推荐标准,232是标识号,C代表RS232的第三次修改(1969年),在这之前,还有RS232B、RS232A. 在RS-232标准中,字符是以一串行的比特串来一个接一个的串列(serial)方式传输,优点是传输线少,配线简单,发送距离可以较远。 最常用的编码格式是异步起停(asynchronous start-stop)格式,它使用一个起始比特后面紧跟7或8个数据比特(bit),然后是可选的奇偶校验比特,最后是一或两个停止比特。所以发送一个字符至少需要10比特,带来的一个好的效果是使全部的传输速率,发送信号的速率以10划分。
串口是我们实际工作中经常使用的一个接口,比如我们在Linux下使用的debug串口,它用来登录Linux系统,输出log。另外我们也会使用串口和外部的一些模块通信,比如GPS模块、RS485等。这里对Linux下串口使用做个总结,希望对大家有所帮助。
LINUX的库提供的波特率是标准波特率,应用时有时会用到非标准的波特率。以下试验使用的xilinx的zynq7020,linux内核是4.14版本。以增加波特率100k为例。看了一些直接在应用端改的一些方法,已经取消了,所以更改了内核
mmap() 系统调用能够将文件映射到内存空间,然后可以通过读写内存来读写文件。我们先来看看 mmap() 系统调用的用法吧,mmap() 函数的原型如下:
与dup函数功能一样,复制由fd指向的文件描述符,调用成功后返回新的文件描述符,与旧的文件描述符共同指向同一个文件。
https://man7.org/linux/man-pages/man2/mmap.2.html
首先,我们需要在Go项目中引入相应的依赖。Go官方提供了gopkg.in/yaml.v2包来处理Yaml编码和解码。在命令行中执行以下命令来引入依赖:
内核在进程与外部世界之间交换数据.外部世界包括磁盘文件,终端与外部 设备,磁盘文件与终端的链接有相似之处也有差异
另外,在Linux下的C语言头文件一部分不可以在Windows系统上运行,可能导致一些不便。
导语:掐指一算自己从研究生开始投入到Linux的海洋也有几年的时间,即便如此依然对其各种功能模块一知半解。无数次看了Linux内核的技术文章后一头雾水,为了更系统地更有方法的学Linux,特此记录。 历史 1991年,还在芬兰赫尔辛基大学上学的Linus Torvalds在自己的Intel 386计算机上开发了属于他自己的第一个程序,并利用Internet发布了他开发的源代码,将其命名为Linux,从而创建了Linux操作系统,并在同年公开了Linux的代码,从而开启了一个伟大的时代。在之后的将近30年的
导语:掐指一算自己从研究生开始投入到Linux的海洋也有几年的时间,即便如此依然对其各种功能模块一知半解。无数次看了Linux内核的技术文章后一头雾水,为了更系统地更有方法的学Linux,特此记录。 历史 1991年,还在芬兰赫尔辛基大学上学的Linus Torvalds在自己的Intel 386计算机上开发了属于他自己的第一个程序,并利用Internet发布了他开发的源代码,将其命名为Linux,从而创建了Linux操作系统,并在同年公开了Linux的代码,从而开启了一个伟大的时代。在之后的将近30
要说最好用的是select的形式,防止漏掉发送过来的数据,缺点是需要单开一条线程独立出来串口服务用来接收数据 一般比较大的工程里还是结合着libevent来用吧。 一般形式
mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现了文件磁盘地址和进程虚拟地址的映射关系。实现映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用read,write等系统调用函数。相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享。如下图所示:
最常见于使用SecureCRT等工具远程创建打开终端,下面的代码演示在代码中创建打开终端:
下载并配置好JAVA(JAVA_HOME、CLASSPATH、PATH),CMD中要能使用javah命令。
tty这个名称源于电传打字节的简称,在linux表示各种终端,终端通常都跟硬件相对应。比如对应于输入设备键盘鼠标,输出设备显示器的控制终端和串口终端。也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,linux是怎么将它们统一建模的呢?这就是我们今天要讨论的问题。
每敲击一行指令,开启一个或多个程序,具体介绍参考(ROS 2节点-nodes-)。
mmap 即 memory map,也就是内存映射。mmap 是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用 read、write 等系统调用函数。相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享。
之前通过读取/proc/pid/mem的方法读取某个进程的内存数据,mem内部是用copy_from_user实现的,是对虚拟地址进行的操作。但是在某一时刻,该进程的所有内存页不一定都已经被加载到内存。由于虚拟内存的存在,只有那页代码被访问到时(copy_from_user()会判断缺页的情况),才会产生缺页中断,将该页代码加载到内存。这种方式并不够理想,理想的方法是判断哪些数据页已加载到内存中,然后对其进行度量。
有些程序处理从特定设备来的数据.这些与特定设备相关的程序 必须控制与设备的链接.Unix系统中最常见的设备是终端
Linux C语言实现输入密码显示星号-手动实现getch() 废话不多说直接上代码 github传送门 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <termios.h> #include <unistd.h> int getch(void); void get_password(char *password); int main() { char password[20]; get_pass
1、进程在用户空间调用库函数mmap,原型:void mmap(void addr, size_t len, int prot, int flags,
内存映射mmap是Linux内核的一个重要机制,它和虚拟内存管理以及文件IO都有直接的关系,这篇细说一下mmap的一些要点。
本文介绍了Linux系统下共享内存的概念、实现方法以及相关的应用,包括共享内存的读写、同步和调试等方面。
mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用read,write等系统调用函数。相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享。如下图所示:
gcc -o main1 -Wall -g -ggdb -O0 -g3 -gdwarf-2 main1.c
Kmalloc分配的是连续的物理地址空间。如果需要连续的物理页,可以使用此函数,这是内核中内存分配的常用方式,也是大多数情况下应该使用的内存分配方式。
该包的实现是基于标准库os/env包中的相关函数(比如Getenv)来获取系统的环境变量的。获取到环境变量值后,再通过结构体中的tag,将值映射到对应的结构体字段上。
页表是操作系统为每个进程提供私有地址空间和内存的机制。页表决定了内存地址的含义,以及物理内存的哪些部分可以访问。它们允许xv6隔离不同进程的地址空间,并将它们复用到单个物理内存上。
/** * uart分析 * * 其实串口分析就两个重要的文件: S3c2440.c Samsung.c * * **/ /*1. 首先从Samsung.c的模块初始化函数看起*/ static int __init s3c24xx_serial_modinit(void) { int ret; ret = uart_register_driver(&s3c24xx_uart_drv); if (ret < 0) { p
我在前面的文章中多处提到gorm如何将查询结果映射到自定义结构体,都没解决,本次就解决了。
之前在《深入浅出MMC子系统》介绍了MMC子系统,从中可以窥探出eMMC读写的全流程,对于其中的数据流,了解它也非常重要。将其中的数据流抽出来分析,深入理解里面每一层使用的数据结构,会让我们对MMC的理解更为深刻。
该包的实现是基于标准库os/env包中的相关函数(比如Getenv�)来获取系统的环境变量的。获取到环境变量值后,再通过结构体中的tag,将值映射到对应的结构体字段上。
最近在学习UNIX的编程,用的书是《UNIX环境高级编程》,看到书中有很有实例,我用的操作系统是RadHat,照着书把程序清单输入后编译却通不过,显示的错误是没有“apue.h头文件”。这下对我这只菜鸟来说就是当头一棒,这不坑爹吗?就照着书把程序再抄了一遍,发现出现同样的问题,这下引起我的思考。原来apue.h是作者自己写的一个文件,包含了常用的头文件,系统不自带。其中包含了常用的头文件,以及出错处理函数的定义。需要自己去配置这样的头文件,特将解决的方法总结如下: 在http://www.ap
一、共享内存简介 共享内存区是最快的IPC形式,这些进程间数据传递不再涉及到内核,换句话说是进程不再通过执行进入内核的系统调用来传递彼此的数据。 即每个进程地址空间都有一个共享存储器的映射区,当这
上面我们讲了,空白区添加我们的代码.但是有的时候.我们的空白区不够了怎么办.所以需要进行扩大节.
过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间,实际内存容量小于4G),逻辑空间也只能描述4G的线性地址空间。
mmap是linux操作系统提供给用户空间调用的内存映射函数,很多人仅仅只是知道可以通过mmap完成进程间的内存共享和减少用户态到内核态的数据拷贝次数,但是并没有深入理解mmap在操作系统内部是如何实现的,原理是什么。
unix访问文件的传统方法使用open打开他们,如果有多个进程访问一个文件,则每一个进程在再记得地址空间都包含有该文件的副本,这不必要地浪费了存储空间。下面说明了两个进程同时读一个文件的同一页的情形,系统要将该页从磁盘读到高速缓冲区中,每个进程再执行一个内存期内的复制操作将数据从高速缓冲区读到自己的地址空间。
Posix提供了无亲缘关系进程间共享内存区的两种方法: 内存映射文件:由open函数打开,由mmap函数把得到的描述字映射到当前进程地址空间的一个文件 共享内存区对象:由shm_map打开一个IPC名字,由mmap函数把得到的描述字映射到当前进程地址空间的一个文件
本文将介绍如何对NULL指针地址建立合法映射,从而合法访问NULL指针。本文表达的宗旨:
介绍 Linux 内核中 UART 驱动的接口及使用方法,为 UART 设备的使用者提供参考。
所谓的内存映射就是把物理内存映射到进程的地址空间之内,这些应用程序就可以直接使用输入输出的地址空间,从而提高读写的效率。Linux提供了mmap()函数,用来映射物理内存。在驱动程序中,应用程序以设备文件为对象,调用mmap()函数,内核进行内存映射的准备工作,生成vm_area_struct结构体,然后调用设备驱动程序中定义的mmap函数。
领取专属 10元无门槛券
手把手带您无忧上云