创建大数据平台,是个系统性的工程,并不像简简单单开发一款APP一样,你要深度的了解当前的环境以后的发展。事实上,做大数据平台不是做大数据本身,而是寻找大数据与行业、与业务的某种关联,内在的联结点,能否联姻成功,取决于策划与开发的能力。策划开发得好,事半功倍,会对行业和业务产生不可估量的价值,策划与开发的不好,则会竹篮打水一场空,费时费力自讨苦吃,成为“鸡肋”在所难免。
前几天和三个学计算机专业的学生聊天时聊到了大数据开发方面的话题,他们三个人中,有两个已经进入企业开始工作,另外一个还是大二学生,但已经开设了自己的工作室。他们都是从事程序开发方面工作的。大数据开发自然都有关注到,只是目前的大数据技能水平只能说是“小菜鸟”吧,连入门还谈不上。
文 | 田军 今天,继续来谈一谈“大数据项目如何落地?”这个话题。从事过多个大数据项目的规划方案及项目落地工作,在这里与大家分享一些心得,主要是关于大数据项目如何成功落地并取得预期目标,也可以说
一般来说,一个完整的大数据项目实施,需要经过开发环境搭建、集群环境部署、数据采集、数据存储与交换、数据离线与实时分析、大数据可视化等多个实现流程,这就要求系统掌握大数据技术知识。
本文隶属于专栏《100个问题搞定大数据理论体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
大数据的方向有很多的,即使没有真正经历过,平时也会耳濡目染,在各大杂志公众号新闻上听说过,什么大数据人工智能,大数据分析挖掘,大数据架构师等职位。
我们常说的大数据技术,大致主要起源于Google在2004年前后发表的三篇论文,其实数据处理早就存在,每个公司或者个人都有自己的大数据处理系统,并没有形成编程框架和理念,而这三篇论文也就是我们熟知的大数据三驾马车,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库BigTable,这三篇论文影响了当今大数据生态,可以称得上大数据的基石,Doug cutting大佬在基于谷歌的三篇论文开发出了hadoop hdfs分布式文件存储、MapReduce计算框架,实际上从hadoop开源代码中窥见大数据并没有多么高深的技术难点,大部分实现都是基础的java编程,但是对业界的影响是非常深远的。那个时候大多数公司还是聚焦在单机上,如何尽可能提升单机的性能,需求更贵的服务器,谷歌通过把许多廉价的服务器通过分布式技术组成一个大的存储、计算集群给业界应对存储计算问题提供了新的发展思路。
最近有几个群友问我大数据怎么入门,作为一个零基础大数据入门学习者该看哪些书呢?我结合自己看过的书和了解到的比较好的数据,给大家分享一下。
大数据(big data),是近几年很火的一共概念。 **什么是大数据?**就举一个生活中很常见的一个例子,平常我们使用APP在各大商城进行商品浏览购物的时候,你会发现,当你在一类商品停留的时间较长时,回到首页,轮播图推荐跟猜你喜欢那一栏就有很大的可能给你推荐你刚刚浏览过去商品的同类。这里面就涉及到了大数据的一个概念,APP通过你的浏览记录,分析用户行为,再根据大数据的推荐系统,就完成了从点击浏览,到秒处理推荐的一个过程。 大数据,说白了就是大量数据的一个集合,来源于海量用户的一次次行为数据。大数据的核心意义不在于获取掌握庞大的数据信息,而在于对这些具有巨大价值的数据进行处理,进而得到这些数据的价值。
上面我们讲了 大数据的数据查询方法 ,使用Hive或者 Impala,但是这些只能查询固定历史的数据,如果要实时计算可能就不是那么合适了。
在“2014移动互联发展大会及第五届手机应用开发者大会”上,英特尔中国研究院院长吴甘沙接受人民网记者专访时表示,许多行业都将受益于大数据,大数据的,各行各业正越来越强烈地感觉到大数据的魔力,感觉到大数据的乘法效应。 以下为访谈原文: 主持人:我旁边这位是英特尔中国研究院院长吴甘沙。首先想问您一个问题,我们现在已经进入到了一个大数据时代,我想知道英特尔研究院对于大数据究竟是怎么定义的呢? 吴甘沙:大数据的定义有很多,各个不同的咨询公司都有不同的定义,其实我们更关注数据本身,其实对于数据的探索,大数据并不
今天我们来看一下淘宝、美团和滴滴的大数据平台,一方面进一步学习大厂大数据平台的架构,另一方面也学习大厂的工程师如何画架构图。通过大厂的这些架构图,你就会发现,不但这些知名大厂的大数据平台设计方案大同小异,架构图的画法也有套路可以寻觅。
另外,你也要考虑时间、精力、金钱等各方面的投入情况。学习和掌握大数据相关技术也非一朝一夕之事,不可能一蹴而就,一般的培训课程只能达到入门级别的介绍和讲解,真正要学会并很好地运用大数据技术你还需要后续更深入的学习和大量的实践。所以需要你一个良好的学习规划。
最近这段时间有很多人问我,大数据到底是什么。当然实际上问题没有那么直接。更多的问题是,飞总啊你看我亲戚家的那个企业是不是可以上个大数据啊,用起来就能发财了。或者说这个大数据的新开源项目是不是对我提高这个那个有帮助啊。诸如此类的问题问多了,我也就在问我自己,写大数据系列写到现在了,大数据到底是个什么鬼。 这就让我想到了很多年前看到的Dan Ariely关于大数据的名言: Big data is like teenage sex: everyone talks about it, nobody really k
在大数据的发展当中,对相关专业人才的需求是在持续增长的,包括大数据开发、数据分析挖掘等不同的数据处理环节,都形成了相应的岗位体系,大家各自负责不同的环节,共同完成大数据处理任务。今天我们主要来讲讲大数据开发就业,了解大数据开发有哪些岗位?
今天越来越多的企业认识到,大数据的掌控和分析能力将成为竞争力的核心,企业对大数据的投资也在不断扩大。Gartner调查显示,73%的企业计划在未来两年内投资大数据。以开源Hadoop、Spark等为基础的大数据基础平台解决方案和云服务如雨后春笋不断涌现,形成了近200亿美元的市场规模。然而对于很多企业用户来说,如何评价一个大数据平台的综合能力,常常是选型、平台建设和系统优化时面临的一大挑战。目前来看,国内外还缺乏一套能体现大数据特点,又简便易行,且被工业界广泛认可的大数据平台性能测试标准与工具。 记者日前
字面意思理解:大量的数据,海量的数据 数据集的大小已经远远超过了现有普通数据库软件和工具的处理能力的数据
作为新一轮的技术热点,大数据所受到得到关注是空前的,并且在这两年的发展当中,企业对于大数据的重视程度还在进一步上升,企业基于大数据业务开展所需要的相关岗位人才,也进一步上升。那么培训出来大数据就业前景及工资怎么样,今天我们来详细了解一下。 行业当中早期的大数据从业者,其实很多也并非是大数据科班出身,因为国内的大数据专业,其实是在2016年才首次获批设立。所以行业当中已有的大数据人才,很多人也是从其他的开发方向上转过来的。
要说什么是大数据我想大家多少已经有所了解了,很多落地的案例已经深入到了我们的生活中。大数据具有数据量大、数据类型丰富复杂、数据增长速度快等特点,一切的数据分析必须建立在真实的数据集上才会有意义,而数据质量本身也是影响大数据分析结果的重要因素之一。
0x00 前言 最近发现身边有不少小伙伴想转行做数据工程师,聊天的过程中发现大家对该如何入门有很多迷茫的地方,周末写篇博客记录一下。 哪些人适合继续阅读 数据工程师该如何入门?话题有点大,而且每个人的理解都很不一样,因此我们会先限定一下会对这个话题感兴趣的人群: 做了几年其它软件开发,发现大数据方向更有前景 在校的童鞋,毕业后想搞数据开发,但是学校没相关课程 没搞过软件开发,对之前的工作没信心想搞互联网,发现大数据方向挺不错 本文结构 前面已经限定了一个大致的话题范围,下面介绍一下主要的文章结构: 数据工程
原文地址:https://www.cnblogs.com/ztfjs/p/bigdata.html
再更一篇技术杂谈类的文章。。。粉丝甲:所以这就是你拖更系列文章和视频的理由吗???粉丝乙丙丁:就是!就是!都断更多久了?我:咳。。。最近杂事缠身,还望恕罪!下面是食用须知:
“氢元数据”定位于基础数据服务商。开发服务的先行者,平台是以自有数据为基础,通过各种便捷服务整合及第三方数据接入,为互联网开发全行业提供标准化API技术支撑服务平台。 公司提供API数据推送和定制化数
对于海量数据价值的挖掘,需要通过大数据分析来实现,而这些数据由于具有不同于传统数据的新特征,传统的数据分析技术和工具都不能高效的进行处理,因而才有了基于大数据技术平台进行大数据分析的需求。今天,我们以Hadoop框架为例,来看几个大数据分析项目实例。
近几年的大数据,确实在行业当中得到越来越多的重视,越来越多的企业开始成立数据业务部门,针对企业不断累积起来的数据资产,进行价值挖掘和应用。对于企业而言,大数据相关人才的引进,有大数据开发,也有数据分析,今天我们就来讲讲大数据开发岗和分析岗两者的区别。
2015年6月16日,标志性的DaaS(数据即服务)大数据公司“星图数据”宣布上线国内首个大数据开放平台—“蜂巢”。“蜂巢(DataComb)”大数据开放平台将开放星图数据自有的大数据体系,并引入第三方数据源和数据开发者,面向各行业提供更丰富更优质的“大数据+”应用服务,实现多方共赢的大数据商业化生态圈。发布会邀请中关村管委会、中关村大数据产业联盟等政府领导出席,并由WPP集团、京东、中国电信等合作伙伴共同启动平台上线。 大数据起源于美国,而北美大数据行业的繁荣兴盛很大程度上是有赖于大数据开放生态的普
分享老师:江晓东 世界500强企业咨询师、曾担任奥巴马政府经济刺激计划MAMP项目顾问
大数据是近五年兴起的行业,发展迅速,很多技术经过这些年的迭代也变得比较成熟了,同时新的东西也不断涌现,想要保持自己竞争力的唯一办法就是不断学习。但是,大数据需要学习什么?
我们总是说现在进入了一个大数据时代,所以在当前的大数据时代背景下,大数据专业是不错的选择,随着大数据技术逐渐开始落地应用,这个行业已经释放出了大量的人才需求,不仅仅是互联网行业,传统行业也开始需要大量的大数据行业人才。
在大数据战略合作协议签约仪式上,国家统计局局长马建堂讲了这样一席话:“一个大规模生产、分享和利用大数据的时代正在来临。谁拥有了大数据,谁就占领了制高点,取得了主动权。” 大数据作为非结构化和电子化的海量数据,数量之大、类型之多、变化之快,前所未有。开发好、利用好这一巨大宝藏,非一家之力可成。 专家指出,企业既是大数据的主要生产者,也是经验丰富的使用者,还是大数据的直接受益者。 一个非常小的公司,并没有大量的数据。但是仍需要思考大数据,因为在未来一段时间,无论是卫生医疗,还是零售制造行业
1 失败大数据项目的特征 根据在美国做了15年的大数据项目、产品研发和管理,以及其它一些相关的数据分析的工作经验,了解到的其它的做的比较成功的和失败的项目,跟大家做一个经验分享。基本上大数据项目失败的
终于又可以名正言顺的发一篇聊天吹水。。。哦不是,是技术杂谈类的文章了,官方有活动?那必须跟上啊!咳~那么闲言少叙,下面是食用须知:
声明:本文参考了淘宝/滴滴/美团发表的关于大数据平台建设的文章基础上予以整理。参考链接和作者在文末给出。
2006年Apache Hadoop发布,2008年Hadoop成为Apache顶级项目。在那时,中国移动、百度、淘宝等都已经开始使用Hadoop技术。Hadoop现在早已成为Apache软件基金会的
大数据分析Storm:Apache Storm是一种开源的分布式实时计算系统。Storm加速了流数据处理的过程,为Hadoop批处理提供实时数据处理。 Spark:Spark是一个兼容Hadoop数据源的内存数据处理平台,运行速度相比于HadoopMapReduce更快。Spark适合机器学习以及交互式数据查询工作,包含Scala、Python和JavaAPI,这更有利于开发人员使用。 Twitter流处理工具Summingbird:与Storm和Scalding相似,开发者可以使用非常接近原生的Scala
贵阳交易所推出10大战略,将打造数权、数融在内的12个大数据平台 近日,已经成立一年多的中国首家大数据交易中心——贵阳大数据交易所宣布即将推出包括“数据”星河战略、大数据交易高峰盛典、打造贵漂文化、中
企业要开展大数据相关业务,首先就需要基于自身的需求,来设计搭建数据系统平台。而大数据系统平台的搭建,需要基于实际需求,来进行系统架构规划。今天我们就从大数据平台开发的角度,来对大数据系统架构模块做一个简单的介绍。
又到了金三银四的招聘旺季,很多想入行大数据开发的程序员却在面试上发了愁。大数据方向技术栈繁多,不同的面试官和公司用到的技术栈也不一样,问的问题也是各有不同。 大厂面试题回忆: 【腾讯 PCG 事业部 大数据开发岗】 spark 数据分发机制 Spark Streaming 给个具体视频应用场景阐述开发思路及任务架构【阿里创新业务事业群 大数据开发工程师】 spark partition 的类型及特点 yarn 任务启动的具体流程 spark 任务分发机制 为了帮助想要入行大数据开发的程序员们在金三银四
大家好,非常荣幸能够和大家一同分享大数据领域相关的经验。首先简单的自我介绍一下,大家可以叫我小朱,之前从事JavaWeb开发,后来转为大数据开发,目前从事大数据培训,那我今天的主题主要是和大家分享如何踏入这一领域,以一个开发者的身份以及一个初学者的身份如何去进行规划和学习。
Taier 是一个大数据分布式可视化的DAG任务调度系统,旨在降低ETL开发成本、提高大数据平台稳定性,大数据开发人员可以在 Taier 直接进行业务逻辑的开发,而不用关心任务错综复杂的依赖关系与底层的大数据平台的架构实现,将工作的重心更多地聚焦在业务之中。
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难
单单提起java或者大数据,很多人对此都一目了然,但对于Java大数据这样一个新鲜名词,多少有些疑惑。那java和java大数据学习的内容是一样的吗?两者有什么区别呢?今天就从java和java大数据的以下方面谈谈两者的区别。
最近有很多人问我,大数据专业有什么好的毕设项目,我就简单的回复了一下。也有直接问我要源码的....
5月26日,由工业和信息化部、国家发展和改革委员会、国家互联网信息办公室和贵州省人民政府主办,国家工业信息安全发展研究中心承办的《大数据优秀产品和应用解决方案案例系列丛书》发布会暨数博会“十佳大数据案例”揭晓活动在2019中国国际大数据产业博览会上成功举办。 2019年数博会案例评选,是有史以来参与厂家最多,条件最苛刻的。专家评审团透露,为贯彻落实国家大数据战略,全面掌握我国大数据产业发展和应用情况,本次大数据案例评选成立了专家评审团,制定案例应用需求、产品架构、关键技术、应用效果和企业综合实力五
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。
随着大数据时代的到来,【这次国~家~教~育~部的改革要动真格了】,JAVA程序员们仅有的一点点竞争力很快就不复存在,为什么这么说呢?
大数据已经成为时代发展的趋势,很多人纷纷选择学习大数据,想要进入大数据行业。大数据技术体系庞大,包括的知识较多,系统的学习大数据可以让你全面掌握大数据技能。学习大数据需要掌握哪些知识?
大数据时代,中国IT环境也将面临重新洗牌,不仅仅是企业,更是程序员们转型可遇而不可求的机遇。 国内大多数大型互联网公司的程序员被称作研发工程师,但实际上国内几乎没有研发项目,只能叫做开发。开发程序员的
信息时代,海量数据链接无限价值 洞察和专业,足以改变世界 腾讯云大数据平台邀您一起,探索数据的无限潜能! 关于我们 腾讯云大数据,可靠、安全、易用的大数据分析处理平台 提供流式数据处理,数仓构建,商业智能等稳定、安全的大数据服务 战“疫”期间,为“腾讯防疫健康码”引用落地提供技术支撑,惠及9亿人口 践行真正惠及社会民生及行业发展的实践之路! 热招职位 01 腾讯云大数据高级开发工程师 (深圳/北京/上海) 岗位职责: 1. 负责腾讯云大数据产品的研发,包括一站式大数据开发平台WeData, ES等产品
大数据人才缺口达150万 全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达1500000! 事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。 大数据专
领取专属 10元无门槛券
手把手带您无忧上云