关于作者:小姬,某知名互联网公司产品专家,对数据采集、生产、加工有所了解,期望多和大家交流数据知识,以数据作为提出好问题的基础,发觉商业价值。
阅读建议:本篇站在数据分析师角度,和大家谈谈工作中涉及到的数仓知识点,内容不难理解,对于初学者来说比较友好。
不同的团队会面临不同的难题,今天居士简单聊一下这几年自己亲身经历以及帮助一些小伙伴解惑后的一些感想。
目前市面上的BI工具都在提及敏捷BI解决方案。敏捷BI解决方案所提供的自动化技术支持主要是从数据源取数到BI前端工具展现。这样的敏捷BI解决方案在企业数据量不是很庞大的情况下,还是很好的支撑运行。PowerBI可以支持大量的数据处理,但是对于硬件设备的要求也是非常高的。但是数据量变得越来越庞大就会导致BI报表出现运行缓慢,大屏展现出现数据延迟等等现象。
当一家企业开始应用商业智能(Business Intelligence,BI)的战略和技术时,首先需要明确数据集市和数据仓库的区别。理解这种差异将决定你采用何种BI架构和数据驱动决策。
大数据时代中,数据仓库解决了商业智能分析过程中的数据管理问题,但是存在烟囱式、冗余高的弊端
最近遇到了一些朋友在群里讨论数据有哪些工作内容,看了一些讨论后总感觉不是很全面。今晚就顺便整理一波居士自己对数据工作内容的理解,这次会从数据团队的角度出发有哪些工作内容,希望能帮助大家理清思路。
很长一段时间,BI和数据仓库几乎都是如影随形、难舍难分。企业如果想要实行“数据驱动决策-决策推动业务发展”的机制,就必须先有数据仓库充当中央存储库,供BI查询和调取,然后再在BI上进行数据的分析与可视化。
上次介绍了HDFS,本来想进入Mapreduce,但感觉Mapreduce基本废弃,于是直接进入了Hive中来。
哪怕像情人节这么浪漫的日子,DBA们还是要埋头苦干与数仓持续战斗。面对浩大的数仓工程,DBA们每天身兼搬砖工、侦察兵和消防员……多个角色,心情也随之在窃喜、崩溃、惊慌、失落与无奈之间频繁切换……
1,离线数据处理:项目内容为通过对网站访问日志的采集和清洗,结合数据库中的结构化用户数据,统计并展示网站的PV、UV情况,以对网站的运行情况进行监控。通过此项目,回顾并串联前面讲述的离线数据处理相关技术,如:FIune、Sqoop、Hive、Spark等,了解和掌握PB级数据离线处理的一般过程和架构。
2021年8月20日,贵州农信行社数据仓库软硬件采购项目单一来源采购公示发布。 拟采购商品信息:行社数据仓库软硬件(GaussDB数据库及大数据软件License部分) 采用单一来源采购方式的原因及相关说明:大数据平台由贵安迁移至观山湖数据中心时,使用了华为泰山服务器和大数据产品,用于搭建观山湖数据中心大数据平台。现由于数据量增长大数据平台需进行扩容,鉴于后续应用扩展及行社数仓项目建设,为保持服务延续性及前后软硬件产品的一致性,同时考虑到系统兼容性,便于投产后运维,拟继续采购华为系列产品用于扩容大数据平台
数据仓库(数仓)与大数据区别,数据仓库(数仓)与数据库的区别,大数据与传统数据库的区别等等,这篇文章带你了解。
数据开发是指将数据从不同的来源整合、清洗、转换、存储和分析的过程。数据开发的目的是为了让数据更加有用,以便于企业做出更好的决策。在本文中,我们将介绍数据开发的基本概念,包括数据仓库、ETL、数据建模、数据挖掘和数据可视化等。
大家好,我是一哥,今天给大家分享下如何使用Spark从无到有搭建一个数仓项目。 数据仓库解决了什么业务问题,它和传统数据库的区别是什么? 对数据仓库的基础架构有大致的了解。 使用 Spark 可
随着数据时代的到来,数据量和数据复杂度的增加推动了数据工程领域的快速发展。为了满足各类数据获取/计算等需求,宜人贷自研了PaaS数据服务平台Genie,本文将重点介绍其技术架构及功能模块。
沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒!后来经过大量实际调查和分析,发现在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒,这是因为美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
大数据时代,作为数据的掌握者,我们不仅要更好地使用数据,也要更好地管理数据。而数据仓库正是这样一套管理和组织数据的解决方案。
BI又叫商业智能,简单点说就是从本质上改变企业做决策拍脑袋的情况。BI的定义分为广义和狭义两种。
随着大数据在越来越多的企业当中落地,企业要开展大数据相关的业务,那么首先要搭建起自身的数据平台。而企业搭建大数据平台,往往需要结合成本、业务、人员等各方面的因素,来规划数据平台建设方案。今天我们就来聊聊数据平台建设的几种方案。
和以 MySQL 为代表的传统事务型数据库相比,数据仓库有一个很大的特点,就是主要面向批量写和查询进行优化,可以不支持更新、事务这些高级特性。一些商用的数据仓库分析系统,例如 Vertica,已经可以做到千亿级数据的秒级导入和秒级查询。 神策数据一直致力于帮助企业搭建数据仓库,实现数据的秒级响应,积累数据资产。本文主要通过神策数据在技术上的探索与实践,探讨如何利用现有的开源组件实现分析型数据仓库当中的读写分离。 为什么要进行读写分离 分析性数据仓库一般有如下几个特点: 面临着复杂的多维分析需求,能够进行任意
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,和架构,你不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
本系列教程为量化开发者,提供本地量化金融数据仓库的搭建教程与全套源代码。我们以恒有数(UDATA)金融数据社区为数据源,将金融基础数据落到本地数据库。教程提供全套源代码,包括历史数据下载与增量数据更新,数据更新任务部署与日常监控等操作。
我(Lewis Gavin)目前的工作角色是用 Amazon Redshift 来设计数据仓库。以我的经验,无论我们采用的是 Oracle 来搭建数仓,还是以 Hadoop 来搭建 Data Lack(数据湖),基础型的概念还是没有变。
数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。其实数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——源数据、数据仓库、数据应用:
贴源层,一般来说抽取的是源系统的数据,是一个数据缓冲区,和源系统保持一致,但并不是说贴源层的数据就可原来的一模一样不变了
“中台”某种意义上是一个正宗的中国概念,早在2015年,马老师访问过北欧的Supercell游戏公司之后,便提出了这个概念。随之而来的,是阿里带动的“大中台、小前台”运动。这个概念听起来还是非常不错的,因为整合技术力量,既能够有效降低研发成本,也能够带来业务上更多的试错机会。但当大家投入进去之后才发现,中台的建设成本如此之大,乃至于一般小公司无法负担起基础的成本。大公司倒是搞好了,但依然无法实现“小前台”的理念,业务依旧需要定制开发。其实这就是今天大家对中台有意见的原因,因为技术上能够整合,但业务上却难以体现其价值。
在《什么的是用户画像》一文中,我们已经知道用户画像对于企业的巨大意义,当然也有着非常大实时难度。那么在用户画像的系统架构中都有哪些难度和重点要考虑的问题呢?
导读:元数据管理是企业数据治理的基础,是数据仓库的提升。作为一名数据人,首要任务就是理解元数据管理。
大家好,我是一哥,前几天跟一个朋友聊了一些数据中台建设的内容,针对数据仓库中主题域如何划分这个话题聊了很多。其实数据仓库建设的理论大家已经都知道了不少,也看过不少书,那么在实际建设数据仓库中,我们还是会遇到各种问题。
导读:要建设数据中台,我们首先需要明确什么是数据中台,以及数据中台能为企业带来什么价值。
随着大数据技术的不断更新和迭代,数据管理工具得到了飞速的发展,相关概念如雨后春笋一般应运而生,如从最初决策支持系统(DSS)到商业智能(BI)、数据仓库、数据湖、数据中台等,这些概念特别容易混淆,本文对这些名词术语及内涵进行系统的解析,便于读者对数据平台相关的概念有全面的认识。
进几年A(人工智能)B(大数据)C(云计算)发展火热,由于笔者在一二线互联网行业从事过大数据相关工作,因此决定在大数据领域对自己的所见所闻,来对该行业之外的人士所做一个讲述,以及对想进入该行业的从业人员做个简单的讲述和分享。
对于企业而言,坐拥庞大的数据资源,想要实现大数据分析,首要的就是要搭建起自身的大数据系统平台,而每个公司都有自己特定的业务场景,因此在大数据平台上的需求是不一样的。今天我们仅从通用的角度,来聊聊大数据分析需要什么技术架构?
大家好,我是一哥,元数据管理是企业数据治理的基础,是数据仓库建设的关键。作为一名数据人,首要任务就是理解元数据管理。
企业要开展大数据相关业务,首先就需要基于自身的需求,来设计搭建数据系统平台。而大数据系统平台的搭建,需要基于实际需求,来进行系统架构规划。今天我们就从大数据平台开发的角度,来对大数据系统架构模块做一个简单的介绍。
刘耀铭同学元数据系列作品的第一篇,大家支持! 其他元数据相关系列文章: 基于元数据驱动的ETL Hive 元数据表结构详解 1、 元数据是描述其他数据的数据(data about other data),用于提供某种资源有关信息的结构化数据(structed data)。字面上看无法看出所以然,但其实看对应的英文含义就明确了,Meta指“对······的描述”类似Meta tag,所以元数据就是对数据的解释和描述。 2、 这里主要将数据仓库的元数据分为3类:DBMS数据字典、ETL处理流程产生的日志、BI
Hadoop job 提交简图 或 YARN 架构 或 YARN 工作机制 或 job 提交流程 0、job 提交简图
问题导读 1.实时数据仓库有哪些特点? 2.公司构建实时数据仓库有哪些好处? 3.如何构建实时数据仓库? 4.实时数据仓库本文解析了哪些架构? 越来越多的实时数据需求,需要更多的实时数据来做业务决策,例如需要依据销售情况做一个资源位的调整;同时有些活动也需要实时数据来增强与用户的互动。如果数据有实时和离线两种方案,优先考虑实时的,如果实时实现不了再考虑离线的方式。 实时数据仓库,已经被很多公司所接受,而且接触很多About云社区会员,都在筹备搭建实时数据仓库。 1.那么实时数据仓库有哪些特点:
存算分离,现在已经成为云原生数据库的标配, 开始大规模流行。存算分离后, 进一步使计算单元和存储单元解耦,每个单元可以实现单独的动态扩缩容,并且可以通过冗余配置,实现对单点故障的容忍度, 可以说是近年来数据库市场上的一大进步。
互联网已经高速发展了很多年,各大企业都根据自己的业务搭建了自己的门户网站,拥有自己的服务器,以及自己的用户。用户在对企业的服务进行交互访问时,用户给企业反馈的信息去哪里了?比如说我们最常见的注册信息,企业给到我们的资源从哪里来的?比如说最常见的商品列表。其实这些数据都存放在企业级的数据库当中,离开了数据库,在优秀的架构设计,在优秀的代码都是没有灵魂的。目前企业主流的数据一般分为关系型数据库和非关系型数据库,常见的关系型数据库:mysql,oracle,sqlserver等,常见的非关系型数据库:redis,hbase,mongodb等。数据库的存在,其主要作用是满足在用户和企业服务交互时,满足低时延的增删改查操作。
根据企业的需求,业务数据存储在 MySQL 中,选择 Sqoop 作为 ETL 工具,HDFS 临时保存 Sqoop 抽取的数据。数据仓库部分选择主流的 Hive,并使用 Tez 进行优化;其中 ADS 层的数据会导出到 MySQL 中,便于前端业务进行快速调用。使用 Presto 作为快速查询的工具,Azkaban 作为调度工具。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。
在近期AI科技评论对张杰博士进行的采访中,张杰如是回答了他对知识图谱未来发展的看法。
数据库行业正走向分水岭。 过去几年,全球数据库行业发展迅猛。2020年,Gartner首次把数据库领域的魔力象限重新定义为Cloud DBMS,把云数据库作为唯一的评价方向;2021年,Gartner魔力象限又发生了两个关键的变化: 1、Snowflake和Databricks两个云端数据仓库进入领导者象限; 2、放开了魔力象限的收入门槛限制,SingleStore、Exasol、MariaDB、Couchbase等数据库新势力首次进入榜单。 某种程度上,这种变化的背后,暗示着全球数据库已经进入发展的黄金时
本项目案例由帆软投递并参与“数据猿年度金猿策划活动——《2022大数据产业年度创新服务企业》榜单/奖项”评选。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
现在各种新名词层出不穷,顶层的有数字城市、智慧地球、智慧城市、城市大脑;企业层面的有数字化转型、互联网经济,数字经济、数字平台; 平台层面的有物联网,云计算,大数据,5G,人工智能,机器智能,深度学习,知识图谱;技术层面的有数据仓库、数据集市、大数据平台、数据湖、数据中台、业务中台、技术中台等等,总之是你方唱罢他登场,各种概念满天飞…
商业智能BI(Business Intelligence) 。相比于数据仓库、数据挖掘,它是一个更大的概念。商业智能可以说是基于数据仓库,经过了数据挖掘后,得到了商业价值的过程。所以说数据仓库是个金矿,数据挖掘是炼金术,而商业报告则是黄金。
领取专属 10元无门槛券
手把手带您无忧上云