首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于seaborn绘制多子图

公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~之前也写过一些关于seaborn的文章,本文给大家介绍如何使用seaborn来绘制多子图。...seaborn简介Seaborn是一个Python数据可视化库,建立在Matplotlib之上,专注于创建美观、有吸引力的统计图表。...Seaborn的代码简洁易懂,使得用户可以更专注于数据分析和展示,而不必过多关注图表的细节设置。...这个函数之所以有这些功能,是因为函数底层使用了FacetGrid来组装这些图形。FacetGrid绘图的x和y参数必须为DataFrame的列的名字。...和tip两个字段绘制,alpha表示散点的透明度第三行:表示添加图例,右侧的smoker(No-Yes);否则不会显示图例legend回归散点图regplotIn 9:g = sns.FacetGrid

68730
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数据可视化入门教程

    ('折线图',fontsize=15,color='b') #设置图像的X、Y轴标题大小,颜色,与坐标轴的距离 plt.xlabel('X轴',fontsize=10,color='r',labelpad...Seaborn 官网http://seaborn.pydata.org/ Seaborn 是一个基于matplotlib的 Python 数据可视化库,它建立在matplotlib之上,并与Pandas...Seaborn 可用于探索数据,它的绘图功能对包含整个数据集的数据框和数组进行操作,并在内部执行必要的语义映射和统计聚合以生成信息图,其面向数据集的声明式 API可以专注于绘图的不同元素的含义,而不是如何绘制它们的细节...Matplotlib 拥有全面而强大的 API,几乎可以根据自己的喜好更改图形的任何属性,seaborn 的高级界面和 matplotlib 的深度可定制性相结合,使得Seaborn既可以快速探索数据,...绘制多行图 将变量按照多行的形式进行绘制,使用sns.FacetGrid命令。

    2.4K40

    seaborn从入门到精通03-绘图功能实现02-分类绘图Categorical plots

    在关系图教程中,我们看到了如何使用不同的可视化表示来显示数据集中多个变量之间的关系。在示例中,我们关注的主要关系是两个数值变量之间的情况。...legend:设定是否显示图例。 legend_out:设定图例是否放在绘图外。 sharex, sharey:设定是否使用相同的x、y轴范围。...margin_titles:设定上边缘的标题是否显示。 facet_kws:可选的传递给 FacetGrid 的其他参数。 ci:设定计算置信区间的方法。 **kwargs:其他可选参数。...legend:设定是否显示图例。 legend_out:设定图例是否放在绘图外。 sharex, sharey:设定是否使用相同的x、y轴范围。...margin_titles:设定上边缘的标题是否显示。 facet_kws:可选的传递给 FacetGrid 的其他参数。 ci:设定计算置信区间的方法。 **kwargs:其他可选参数。

    38820

    Matplotlib中的titles(标题)、labels(标签)和legends(图例)

    Matplotlib是一个Python中常用的绘图库,用于创建各种类型的图表。在Matplotlib中,你可以使用titles(标题)、labels(标签)和legends(图例)来增强你的图表。...默认情况下,子图标题显示在子图的上方。使用loc参数可以将唯一的标题与子图的左边缘或右边缘对齐,也可以向子图添加其他标题。...默认情况下,它是一个标题,在最上面的子标题中间对齐,字体大小比普通的子标题大。 与轴标签类似,y轴和x轴也有替代标签。...legends 图例是子图中的辅助框,它告诉我们哪些数据点属于哪个逻辑组。...当调用ax.legend()时,每个没有以下划线开头的标签且包含在轴对象中的艺术家都会生成一个轴图例条目。

    63610

    seaborn从入门到精通02-绘图功能概述

    The organization looks a bit like this: 相比之下,图形级函数通过管理图形的seaborn对象(通常是FacetGrid)与matplotlib进行接口。...这意味着它们同样灵活,但也有一个缺点:特定于种类的参数不会出现在函数签名或文档字符串中。它们的一些特性可能不太容易发现,在理解如何实现特定目标之前,您可能需要查看两个不同的文档页面。...按照设计,它们“拥有”自己的图形,包括其初始化,因此不存在使用图形级函数在现有轴上绘制图形的概念。这个约束允许图形级函数实现一些特性,比如将图例放在图之外。...,而不用考虑图中的行和列的总数: g = sns.FacetGrid(penguins) # 第1行 g = sns.FacetGrid(penguins, col="sex") # 第2行 g =...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。

    30230

    数据可视化基础与应用-04-seaborn库从入门到精通01-02

    它的面向数据集的声明性API让您可以专注于图表的不同元素的含义,而不是如何绘制它们的细节。...请注意,我们如何仅提供变量的名称及其在图中的角色。与直接使用matplotlib不同,不需要根据颜色值或标记代码指定绘图元素的属性。...在幕后,seaborn处理从数据框架中的值到matplotlib能够理解的参数的转换。这种声明性方法使您能够将注意力集中在想要回答的问题上,而不是集中在如何控制matplotlib的细节上。...按照设计,它们“拥有”自己的图形,包括其初始化,因此不存在使用图形级函数在现有轴上绘制图形的概念。这个约束允许图形级函数实现一些特性,比如将图例放在图之外。...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。

    22410

    使用Python中的igraph为绘图添加标题和图例

    在 `igraph` 中,可以通过添加标题和图例来增强图形的可读性和表达能力。我们可以使用 `igraph.plot` 函数进行绘图,并通过它的参数来指定标题和图例。...**1、问题背景**在python中的igraph库中,能否为绘图添加图例和标题?在手册或教程中都没有提到这个功能,但是在R中是可以的。...**2、解决方案**R本身提供了一个相当高级的绘图系统,而R接口只是对其进行了利用,因此可以在R中轻松创建绘图标题和图例。...获取其surface属性以访问所进行绘制的Cairo表面,使用此表面构建一个Cairo画图上下文,然后使用画图上下文直接在绘图上用Cairo进行绘制。第二种选择就是我们如何向绘图添加标签。...构建图例更复杂,但我希望你能根据这个思路继续往下走。图例的标签可以通过反复调用TextDrawer的draw或draw_at方法来构建(当然,在重复调用之间调整TextDrawer的text属性)。

    8510

    数据可视化基础与应用-04-seaborn库从入门到精通03

    统计分析是一个理解数据集中的变量如何相互关联以及这些关系如何依赖于其他变量的过程。可视化可以是这个过程的核心组成部分,因为当数据被正确地可视化时,人类的视觉系统可以看到表明关系的趋势和模式。...legend:设定是否显示图例。 legend_out:设定图例是否放在绘图外。 sharex, sharey:设定是否使用相同的x、y轴范围。...margin_titles:设定上边缘的标题是否显示。 facet_kws:可选的传递给 FacetGrid 的其他参数。 ci:设定计算置信区间的方法。 **kwargs:其他可选参数。...legend:设定是否显示图例。 legend_out:设定图例是否放在绘图外。 sharex, sharey:设定是否使用相同的x、y轴范围。...margin_titles:设定上边缘的标题是否显示。 facet_kws:可选的传递给 FacetGrid 的其他参数。 ci:设定计算置信区间的方法。 **kwargs:其他可选参数。

    58910

    如何使用Python创建美观而有见地的图表

    例如研究nitty-gritty命令以更改x-ticks的倾斜度或类似的愚蠢行为。甚至不要开始使用多张图表。结果看起来令人印象深刻,并且以编程方式创建这些图表是一种奇妙的感觉。...figsize:允许覆盖6英寸宽和4英寸高的默认输出尺寸。figsize期望一个元组(例如,figsize=(12,8)经常使用的) title:向图表添加标题。...前进到seaborn。 漂亮:与Seaborn的高级绘图 Seaborn利用绘图默认值。为了确保结果匹配,请运行以下命令。...看看如何在一个图表中为单个变量或多个变量生成分布。...FacetGrid Seaborn的FacetGrid是使用Seaborn的最令人信服的论据之一,因为它使创建多图变得轻而易举。通过对图,已经看到了FacetGrid的示例。

    3K20

    ​再见 Seaborn!Altair 数据可视化已超神

    基于详细的数据分析,我们可以决定如何最好地利用手头的数据,帮助我们做出明智的决定。 如果你是数据科学或机器学习初学者,你肯定已经尝试过 Matplotlib 和 Seaborn 来进行数据可视化。...可以使用另一个属性 "origin" 为图例条目着色,并使用两个库的附加变量 "displacement" 控制点的大小。...我们将 DataFrame 作为数据传递,上述两个变量为 x 和 y,而 'origin' 作为图例颜色。...同样,这两个图都很好地提供了相同的信息并且看起来同样出色。 条形图和计数图 在下一组可视化中,我们将绘制一个基本的条形图和计数图。这一次,我们还将添加一个图表标题。...这是计数图的语法 Seaborn 我们使用 FacetGrid 命令根据变量"origin"在网格上显示多个图。

    9.6K30

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图

    seaborn从入门到精通03-绘图功能实现05-构建结构化的网格绘图 总结 本文主要是seaborn从入门到精通系列第3篇,本文介绍了seaborn的绘图功能实现,本文是FacetGrid和PairGrid...本系列的目的是可以完整的完成seaborn从入门到精通。...重点参考连接 参考 seaborn官方 seaborn官方介绍 seaborn可视化入门 【宝藏级】全网最全的Seaborn详细教程-数据分析必备手册(2万字总结) Seaborn常见绘图总结...图形级函数构建在本章教程中讨论的对象之上。在大多数情况下,您将希望使用这些函数。它们负责一些重要的簿记,使每个网格中的多个图同步。本章解释了底层对象是如何工作的,这可能对高级应用程序很有用。...当您希望在数据集的子集中分别可视化变量的分布或多个变量之间的关系时,FacetGrid类非常有用。FacetGrid最多可以用三个维度绘制:row, col, and hue。

    21920

    数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

    你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。 在pandas中,我们可能有多个数据列,并且带有行和列的标签。...参数 描述 label 图例标签 ax 绘图所用的matplotlib子图对象;如果没传值,则使用当前活动的matplotlib子图 style 传给matplotlib的样式字符串,比如'ko--'...y轴 figsize 用于生成图片尺寸的元组 title 标题字符串 legend 添加子图图例(默认是True) sort_columns 按字母顺序绘制各列,默认情况下使用已有的列顺序 ▲表9-4...▲图9-16 DataFrame柱状图 请注意DataFrame的列名称"Genus"被用作了图例标题。...▲图9-28 根据星期几数值绘制的小费百分比箱型图 你可以使用更通用的seaborn.FacetGrid类创建自己的分面网格图。 具体请查看更多的seaborn文档。

    5.4K40

    Seaborn + Pandas带你玩转股市数据可视化分析

    导读: 前面探索性数据分析在介绍可视化探索特征变量时已经介绍了多个可视化图形绘制方法,本文继续介绍两大绘图技巧,分布使用seaborn与pandas包绘制可视化图形。...结构化多绘图网格 当您想要在数据集的子集中分别可视化变量的分布或多个变量之间的关系时,FacetGrid[1]类非常有用。一个FacetGrid可以与多达三个维度可以得出:row,col,和hue。...然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集 FacetGrid.map_dataframe()。...最后,可以使用其他方法调整绘图,以执行更改轴标签,使用不同刻度或添加图例等操作。...热力图的右侧是颜色带,上面代表了数值到颜色的映射,数值由小到大对应色彩由暗到亮。 pairplot看特征间的关系 seaborn中pairplot函数可视化探索数据特征间的关系。

    6.8K40

    小白也能看懂的seaborn入门示例

    ,所涉及参数均有注释,(可左右滑动代码段)在数据集符合要求的情况下,我们大多可以用一行代码实现绘图功能,相信看完示例后你就能初步掌握seaborn画图,如果对绘图要求更高的话,可以查询seaborn手册更改所画图类型的其他默认参数...FacetGrid 是一个绘制多个图表(以网格形式显示)的接口。...步骤: 1、实例化对象 2、map,映射到具体的 seaborn 图表类型 3、添加图例 #按数据子集构造直方图 sns.set(style="darkgrid") tips = sns.load_dataset...("tips") # row行设置,margin_titles边缘标题,bins直方图参数分段 g = sns.FacetGrid(tips, row="sex", col="time", margin_titles...他们尤其善于表现交互作用:一个分类变量的层次之间的关系如何在第二个分类变量的层次之间变化。连接来自相同色调等级的每个点的线允许交互作用通过斜率的差异进行判断,这比对几组点或条的高度比较容易。

    4.7K20

    万字长文 | 超全代码详解Python制作精美炫酷图表教程

    大多数情况下,可以用这个标题来标明图表中所显示的内容,这样回过头来看的时候,就能很快识别出表的内容。title需要一个字符串。 · bins:直方图的bin宽度。...FacetGrids 对我来说,Seaborn的FacetGrid是证明它好用最有说服力的证据之一,因为它能轻而易举地创建多图表。通过配对图,我们已经看到了FacetGrid的一个示例。...FacetGrid— 热图 我最喜欢的一种绘图类型就是FacetGrid的热图,即每一个网格都有热图。...可视化不同地域的幸福指数是如何随时间变化的。叙利亚和阿富汗正处于人生阶梯的末端(这不足为奇)。 ?...结束语 本文展示了如何成为一名真正的Python可视化专家、如何在快速探索时更有效率、以及如何在董事会会议前创建更漂亮的图表、还有如何创建交互式绘图图表,尤其是在绘制地理空间数据时,十分有用。

    3.2K10
    领券