首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何根据fillna或replace中的where条件替换dataframe中的零和NaN值

根据fillna或replace中的where条件替换DataFrame中的零和NaN值,可以通过以下步骤实现:

  1. 首先,导入所需的库:import pandas as pd import numpy as np
  2. 创建一个示例DataFrame:df = pd.DataFrame({'A': [1, 2, 0, np.nan, 4], 'B': [0, np.nan, 3, 4, 5], 'C': [0, 1, 2, 3, 4]})
  3. 使用fillna函数根据条件替换零值和NaN值:df = df.fillna(value=0, where=(df == 0))上述代码中,将DataFrame中的零值和NaN值替换为0,只有当原始值为0时才进行替换。
  4. 使用replace函数根据条件替换零值和NaN值:df = df.replace(to_replace=0, value=np.nan, regex=True)上述代码中,将DataFrame中的零值替换为NaN,只有当原始值为0时才进行替换。

这样,根据fillna或replace中的where条件,就可以替换DataFrame中的零和NaN值。请注意,上述代码中的示例DataFrame和替换条件仅供参考,实际应用中需要根据具体情况进行调整。

关于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体品牌商,无法提供相关链接。但腾讯云提供了丰富的云计算服务,可以通过腾讯云官方网站或相关文档了解更多信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandas数据清洗,排序,索引设置,数据选取

df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行 df.dropna(thresh=3)# 每行至少3个非空值才保留 缺失值填充fillna() df.fillna(0)...df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5 df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN 值替换replace(...) # 将df的A列中 -999 全部替换成空值 df['A'].replace(-999, np.nan) #-999和1000 均替换成空值 obj.replace([-999,1000], np.nan...) # -999替换成空值,1000替换成0 obj.replace([-999,1000], [np.nan, 0]) # 同上,写法不同,更清晰 obj.replace({-999:np.nan,...的所有行组成dataframe query 多个where整合切片,&:于,|:或  df.query(" A>5.0 & (B>3.5 | C<1.0) ")  loc :根据名称Label切片

3.3K20
  • Pandas_Study02

    去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...fillna() fillna 方法可以将df 中的nan 值按需求填充成某值 # 将NaN值用0填充 df.fillna(0,inplace = True) # inplace 指明在原对象上直接修改...NaN gake NaN NaN 700 NaN 600.000000 NaN df.interpolate() """ 可以看出,当待填充的列或行符合条件时,会从最近的那个非NaN值开始将之后的位置全部填充...,value是替换的值 ss.replace({"c":"hello", "a" : "world"}, inplace = True) # 对dataframe 而言,使用replace 稍有不同...inplace = True) 5. apply() 方法使用 replace、dropna、fillna函数要么针对NaN的某行或某列或某个,这些函数的作用有限,本章介绍的apply等函数可以针对整个

    20510

    《利用Python进行数据分析·第2版》第7章 数据清洗和准备7.1 处理缺失数据7.2 数据转换7.3 字符串操作7.4 总结

    对于许多数据集,你可能希望根据数组、Series或DataFrame列中的值来实现转换工作。...替换值 利用fillna方法填充缺失数据可以看做值替换的一种特殊情况。前面已经看到,map可用于修改对象的数据子集,而replace则提供了一种实现该功能的更简单、更灵活的方式。...,可以传入一个由待替换值组成的列表以及一个替换值:: In [63]: data.replace([-999, -1000], np.nan) Out[63]: 0 1.0 1 NaN 2...,则它会根据数据的最小值和最大值计算等长面元。...如果DataFrame的某一列中含有k个不同的值,则可以派生出一个k列矩阵或DataFrame(其值全为1和0)。

    5.3K90

    机器学习中处理缺失值的9种方法

    例如,在数据集的身高和年龄,会有更多年龄列中缺失值,因为女孩通常隐藏他们的年龄相同的如果我们准备工资的数据和经验,我们将有更多的薪水中的遗漏值因为大多数男人不喜欢分享他们的薪水。...Age包含所有整数值,而Cabin包含所有分类值。 1、均值、中值、众数替换 在这种技术中,我们将null值替换为列中所有值的均值/中值或众数。...2、随机样本估算 在这种技术中,我们用dataframe中的随机样本替换所有nan值。它被用来输入数值数据。我们使用sample()对数据进行采样。在这里,我们首先取一个数据样本来填充NaN值。...5、任意值替换 在这种技术中,我们将NaN值替换为任意值。任意值不应该更频繁地出现在数据集中。通常,我们选择最小离群值或最后离群值作为任意值。...6、频繁类别归责 该技术用于填充分类数据中的缺失值。在这里,我们用最常见的标签替换NaN值。首先,我们找到最常见的标签,然后用它替换NaN。

    2.1K40

    Python代码实操:详解数据清洗

    # 用前面的值替换缺失值 nan_result_pd4 = df.fillna(0) # 用0替换缺失值 nan_result_pd5 = df.fillna({'col2...需要注意的是,如果要使用不同具体值替换,需要使用 scalar、dict、Series 或 DataFrame 的格式定义。 上述代码执行后返回如下结果。...上述过程中,主要需要考虑的关键点是缺失值的替换策略,可指定多种方法替换缺失值,具体根据实际需求而定,但大多数情况下均值、众数和中位数的方法较为常用。如果场景固定,也可以使用特定值(例如0)替换。...但是如果数据已经读取完毕并且不希望再重新读取,那可以使用Pandas的 replace 功能将指定的字符串(或列表)替换为 NaN。...更有效的是,如果数据中的缺失值太多而无法通过列表形式穷举时,replace 还支持正则表达式的写法。 当列中的数据全部为空值时,任何替换方法都将失效,任何基于中位数、众数和均值的策略都将失效。

    5K20

    数据清洗与准备(2)

    修改被调用的对象,而不是生成一个备份 limit 用于前向或后向填充时最大的填充范围 2 数据转换 (1)删除重复值 删除重复值用到了drop_duplicates方法: df = pd.DataFrame...k1 k2 4 one 3 6 two 4 (2)使用函数或映射进行数据转换 对于许多数据集,可能希望基于DataFrame中的数组、列或列中的数值进行一些转换,测试数据(data)如下...替代值主要是通过replace函数实现,例如data.replace(-999, 0)表示将data中的-999替换成0;同样的也可以传入列表,例如data.replace([-999, np.nan]..., 0)表示将-999和缺失值替换为0;data.replace([-999, np.nan], [0, 1])表示将-999替换成0,将缺失值替换为1;也可以传递字典,例如data.replace({...今天的内容就介绍到这里,比较重要的内容有补全缺失值和替代值,下一篇将简单介绍重命名轴索引和检测过滤异常值。

    64710

    飞速搞定数据分析与处理-day6-pandas入门教程(数据清洗)

    数据清理 数据清理意味着修复你的数据集中的坏数据。 坏的数据可能是: • 空单元格 • 格式错误的数据 • 错误的数据 • 重复的数据 在本教程中,你将学习如何处理所有这些问题。...fillna()方法允许我们用一个值替换空单元格: #Replace NULL values with the number 130 import pandas as pd df = pd.read_csv...('data.csv') df.fillna(130, inplace = True) 只对指定的列进行替换 上面的例子替换了整个数据框架中的所有空单元。...要想只替换一列的空值,请指定DataFrame的列名。...('data.csv') df["Calories"].fillna(130, inplace = True) 用平均数、中位数或模式替换 一个常见的替换空单元格的方法,是计算该列的平均值、中位数或模式值

    23040

    Pandas数据处理1、DataFrame删除NaN空值(dropna各种属性值控制超全)

    删除NaN空值 在数据操作的时候我们经常会见到NaN空值的情况,很耽误我们的数据清理,那我们使用dropna函数删除DataFrame中的空值。...axis, …]) #填充空值 DataFrame.replace([to_replace, value, …]) #值在“to_replace”替换为“value”。...需要提供列名数组 inplace:值是True和False,True是在原DataFrame上修改,False则创建新副本 测试数据 import pandas as pd import numpy...0或'index',表示按行删除;1或'columns',表示按列删除。 inplace:是否原地替换。布尔值,默认为False。...print("用10替换后的df2 = \n", df2) 实际效果: 总结 我们很多的时候在处理SQL的时候需要去掉空值,其实和这个操作是一样的,空值是很多的时候没有太大意义,数据清洗的时候就会用到这块了

    4.1K20

    Pandas知识点-缺失值处理

    数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值。 一、什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值。 1....自定义缺失值的判断和替换 isin(values): 判断Series或DataFrame中是否包含某些值,可以传入一个可迭代对象、Series、DataFrame或字典。...replace(to_replace=None, value=None): 替换Series或DataFrame中的指定值,一般传入两个参数,to_replace为被替换的值,value为替换后的值。...其实replace()函数已经可以用于缺失值的填充处理了,直接一步到位,而不用先替换成空值再处理。当然,先替换成空值,可以与空值一起处理。 2....四、填充缺失值 fillna(value=None, method=None, axis=None, inplace=False, limit=None): 填充Series或DataFrame中的空值

    4.9K40

    利用关联规则实现推荐算法

    关联规则是以规则的方式呈现项目之间的相关性:关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系...关联规则的经典例子是通过发现顾客放入其购物篮中的不同商品之间的联系,可分析顾客的购买习惯。通过了解哪些商品频繁地被顾客同时购买,可以帮助零售商制定营销策略。...[(dataframe[variable] > up_limit), variable] = up_limit 第三个函数中我们从数据中提取包含“C”的值。...“C”表示退回的物品。要计算总价,变量数量和价格必须大于零。在这个函数中还调用了 Outlier 和 Threshold 函数。...插入到 association_rules 函数中,找到一些其他的统计数据,例如置信度和提升度。

    73030

    30 个小例子帮你快速掌握Pandas

    avg = df['Balance'].mean() df['Balance'].fillna(value=avg, inplace=True) fillna函数的method参数可用于根据列中的上一个或下一个值填充缺失值...第一个参数是位置的索引,第二个参数是列的名称,第三个参数是值。 19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。...Geography列的内存消耗减少了近8倍。 24.替换值 替换函数可用于替换DataFrame中的值。 ? 第一个参数是要替换的值,第二个参数是新值。 我们可以使用字典进行多次替换。 ?

    10.8K10
    领券