消除图像的失真可以通过以下几种方法:
腾讯云相关产品和产品介绍链接地址:
六、图像恢复-超分 20、Fourier Space Losses for Efficient Perceptual Image Super-Resolution 许多超分辨率 (SR) 模型仅针对精度效果进行优化,模型庞大、缺乏效率。大模型在实际应用中通常不实用,本文提出新的损失函数,以从更有效的模型中实现具有高感知质量的 SR。 利用傅立叶空间监督损失来改进从丢失的高频 (HF) 内容,并设计直接在傅立叶域的判别器架构以更好地匹配目标 HF 分布。与最先进的感知 SR 方法 RankSRGAN 和 SR
DxO ViewPoint是一款由法国公司DxO Labs开发的图像校正软件,其特点是可以对图像进行透视校正、失真校正、景深校正等操作,帮助用户快速、准确地将图像纠正为正确的几何形状和比例。
论文地址:https://arxiv.org/pdf/2007.11806.pdf
雨,烟雾,污垢等往往会干扰到摄影师,导致拍摄的景象失真。研发公司Cambridge Consultants的研究人员表示,他们利用AI可以实时重建镜头中受损或模糊的帧。在一次关于机场的视频测试中,它能够准确地再现跑道上的飞机。
基于暗原色先验和常见的雾霾成像模型。为了消除光环伪影,使用低通高斯滤波器来细化粗略估计的大气面纱。然后,重新定义传输,以防止颜色失真的恢复图像。该算法的主要优点是速度快,同时也能取得较好的效果。
计算机视觉在自动化系统观测环境、预测该系统控制器输入值等方面起着至关重要的作用。本文介绍了使用计算机视觉技术进行车道检测的过程,并引导我们完成识别车道区域、计算道路RoC 和估计车道中心距离的步骤。
Fatemeh 首先介绍道,即便是 VVC, AV1/AV2 或 EVC 等下一代编码器使用了更为先进和复杂的编码工具,被编码的视频也无可避免地会产生模糊、块效应、振铃效应等明显可见的压缩伪影,尤其是在低码率编码的情况下。在编码器普遍采用的基于块的混合编码框架中,在块的边界部分产生的不连续性导致了块效应失真。另一种失真来源是量化损失,在低码率下使用粗糙量化和较大的量化步长时,残差信号的变换系数就产生了量化损失,这会引入振铃效应、平滑边缘或者模糊的失真。
广角摄像头拍摄的稠密3D地图有利于导航和自动驾驶等机器人应用.在这项工作中,我们提出了一种实时稠密三维鱼眼相机建图方法,无需显式校正和不失真.我们扩展了传统的变分立体方法,通过使用由摄像机运动引起的轨迹场来约束沿外极曲线的对应搜索.与传统的校正方法相比,我们还提出了一种在不增加处理时间的情况下生成轨迹场的快速方法.通过我们的实现,我们能够使用现代图形处理器实现实时处理.我们的结果显示了我们的非校正稠密建图方法相对于校正变分方法和非校正离散立体匹配方法的优势.
带有雾霾的图像具有低对比度和模糊的特性,这会严重影响下游图像处理模型的表现,例如行人检测、图像分割等。对此,大量的单幅图像去雾方法被开发出来,它们的目的在于把输入的带有雾霾的图像转换成一张清晰图像。然而,伴随着移动设备和边缘设备对分辨率为4k图像处理方法的需求的不断增长,现存的图像去雾的方法很少能高效地处理一张带雾的超高清图像[1]。
DxO PureRAW Mac版是一款raw智能照片处理工具,该软件采用了智能技术,以解决影响所有RAW文件的七个问题:去马赛克,降噪,波纹,变形,色差,不想要的渐晕,以及缺乏清晰度。
GoPro 使用的鱼眼镜头提供了广阔的视野,但它也会扭曲图像。在这个项目中,我们将通过使用 Python 和 OpenCV 校准相机来消除失真。
作为视觉生物,人类对视觉信号损耗(例如块状,模糊,嘈杂和传输损耗)敏感。因此,我将研究重点放在发现图像质量如何影响Web应用程序中的用户行为上。最近,一些研究测试了低质量图像在网站上的影响。康奈尔大学[4]证明了低质量的图像会对用户体验,网站转换率,人们在网站上停留多长时间以及信任/信誉产生负面影响。他们使用由LetGo.com提供的公开数据集训练的深度神经网络模型。目的是衡量图像质量对销售和感知到的信任度的影响,但是他们无法衡量图像质量对可信赖性的影响。
近几年来,去雾方法得到广泛的研究,汤晓鸥等人发现无雾图像相对于雾化图像具有较高的对比度,通过最大化恢复图像的对比度来实现图像去雾,但由于该方法没有从物理模型上恢复真实的场景反射率,图像去雾后有可能出现颜色过饱和失真。 Kaiming He提出了一种基于暗通道先验的方法,即在有雾图像的特定窗中至少有一个颜色分量的值是零,该算法利用最小值滤波估算出介质传播函数,然后利用软抠图原理对估算的介质传播函数进行优化估计,达到了较好的去雾效果。软抠图需要较高计算量,很难得到实际应用。所以后来Kaiming He又提出了引导滤波法,来精细化透射率。
我们现在看到的水下图像都是模糊并且失真,这是因为光衰减和反向散射等现象会对可见度产生不利影响。为了解决这个问题,许多研究人员与学者都做出了努力,Cambride Consultants的DeepRay利用在100000个静止图像数据集上训练的GAN来消除由不透明玻璃板引起的失真,并且开源DeOldify项目采用了包括GAN在内的一系列AI模型来对旧图像和胶片进行着色和还原。在9月微软亚洲研究中心的科学家详细介绍了用于自动视频着色的端到端系统。去年,Nvidia的研究人员描述了一种框架,该框架仅可以从一个着色和带注释的视频帧中推断出颜色。并于6月推出了 Google AI 一种无需人工监督就能为灰度视频着色的算法。
镜头相当于充当晶状体这一环节,简而言之,镜头主要的作用就是聚光。为什么要聚光?比如说在大晴天用放大镜生火,你会发现阳光透过放大镜聚集到一点上,也就是说,想通过一块小面积的芯片去承载这么一片区域就不得不使用镜头聚焦。
RGB-D 图像是一种重要的 3D 数据格式。它已被广泛用于 3D 场景重建、突出目标检测、机器人与自主导航、医学影像与健康监测、环境监测等领域。与 RGB 图像不同,深度图像包含有关从视点到场景对象表面的距离的信息,该视点提供了 3D 场景之间的深度信息。因此,RGB-D联合分析方法在计算机视觉任务中很受欢迎。然而,这些方法使用额外的模态,这将带来多余的存储和传输成本。因此,设计一个高效的RGB-D图像压缩方法是一项重要且具有挑战性的工作。
BInv = imreducehaze(AInv, 'Method','approx','ContrastEnhancement','boost');
论文:https://www.sciencedirect.com/science/article/abs/pii/S156625352200210X
机器之心专栏 作者: 雷晨阳、任烜池 该论文成功提出了第一个无需额外指导或了解闪烁的通用去闪烁方法,可以消除各种闪烁伪影。 高质量的视频通常在时间上具有一致性,但由于各种原因,许多视频会出现闪烁。例如,由于一些老相机硬件质量较差,不能将每帧的曝光时间设置为相同,因此旧电影的亮度可能非常不稳定。此外,具有非常短曝光时间的高速相机可以捕捉室内照明的高频率(例如 60 Hz)变化。 将图像算法应用于时间上一致的视频时可能会带来闪烁,例如图像增强、图像上色和风格转换等有效的处理算法。 视频生成方法生成的视频
Android MediaCodec 解码一般有两种方式:MediaCodec ByteBuffer(MCBB)、MediaCodec Surface(MCS)。
低照度图像增强只是对在低环境光环境下拍摄的图像进行增强,以提高图像视觉清晰度,如下图所示:
我们通常又把模拟的信号称为连续信号,它在一定时间范围内就可以有无线多个不同的取值。
玩深度学习的人都知道,AI算法大部分是数据驱动。数据的质量一定程度上决定了模型的好坏。
近期在深度学习领域的研究聚焦于通过展示带噪点和清晰的图像示例对来训练神经网络修复图像。然后 AI 系统学习如何弥补差异。新方法的不同之处在于,它仅需要两张都带噪点的输入图像来训练。
这是流体材质的第二篇,继上一篇纹理变形之后,讲述如何对齐流体而不再是将它们进行扭曲。
最近,靠着出其不意的扩图效果,“AI扩图”功能凭借搞笑的补全结果频频出圈,火爆全网。网友们踊跃尝试,180度的大反转也让网友们直呼离谱,话题热度高居不。
翻译 | Alex 技术审校 | 章琦 本文来自OTTVerse,作者为Krishna Rao Vijayanagar。
图像可以看做是入射图像和反射图像构成,入射光照射在反射物体上,通过反射物体的反射,形成反射光进入人眼。最后形成的图像r(x,y)可以如下公式表示
自监督学习为监督学习方式提供了巨大的机会,可以更好地利用未标记的数据。这篇文章涵盖了关于图像、视频和控制问题的自监督学习任务的许多有趣想法。
在这个项目中,我使用 Python 和 OpenCV 构建了一个 pipeline 来检测车道线。这个 pipeline 包含以下步骤:
标题:3D Object Detection Method Based on YOLO and K-Means for Image and Point Clouds
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看这个合集:音视频面试题集锦。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱,你可以看看这个合集:音视频知识图谱。
Nik Collection 5 for Mac中文版是一款PS滤镜插件套装,其包含了八款ps插件,分别是Nik Color Efex、Nik Silver Efex、Nik Analog Efex、Nik Viveza、Nik Dfine、Nik Perspective Efex,Nik HDR Efex以及Nik Sharpener,提供了超过300种预设滤镜效果!
欢迎来到《AI产品》专栏,本专栏面向所有热爱人工智能技术的朋友、同学。在本专栏中,会多多分享给大家不同种类的且新奇有趣的AI产品,对产品中的核心技术进行深度剖析。文章底部会推荐相关核心技术学习资料,全部原创!
HDR技术近年来发展迅猛,在未来将会成为图像与视频领域的主流。如何让HDR图像与视频也能够同时兼容地在现有的SDR显示设备上显示,是非常重要的技术挑战。色调映射技术(Tone Mapping)就是用来实现将HDR源信号,转换到SDR源信号的技术。在本系列中,我们将会详细地总结色调映射技术的相关问题,并介绍经典的色调映射算法。将分为三个部分:(一)是色调映射技术的综合介绍;(二)是图像色调映射算法的总结与经典算法介绍;(三)将介绍视频色调映射算法。接前帖,Let's go ahead!
公众号致力于分享点云处理,SLAM,三维视觉,高精地图相关的文章与技术,欢迎各位加入我们,一起每交流一起进步,有兴趣的可联系微信:920177957。本文来自点云PCL博主的分享,未经作者允许请勿转载,欢迎各位同学积极分享和交流。
1、通过简单的数据输入可以计算出摄像机和靶纸安装位置关系,进而为选择相机提供可靠的参考。
目前智能手机最重要的一个方面就是轻松捕捉和分享视频。基于光学图像稳定(OIS)和电子图像稳定(EIS))的融合稳定视频技术,使用Pixel 2 和Pixel 2 XL智能手机,拍摄的视频比以往更流畅,更清晰。视频融合稳定技术用最少的伪影提供高度稳定的画面,目前Pixel 2在DxO的视频排名中领先(同时也获得了智能手机相机的最高综合评分)。
本文介绍了如何通过光学字符识别(OCR)技术来识别收据中的文本内容,并探讨了在识别过程中可能遇到的文本噪声问题,以及如何解决这些问题。同时,文章还介绍了如何使用CNN和LSTM等深度学习技术来提高文本识别的准确率。
你有没有见过下面这张图像上那种神秘的彩色纹路?我们知道这件灰色衬衣本身应该是光滑的,为什么拍出来的照片上会有这样的纹路呢?
光学字符识别技术(OCR)目前被广泛利用在手写识别、打印识别及文本图像识别等相关领域。小到文档识别、银行卡身份证识别,大到广告、海报。因为OCR技术的发明,极大简化了我们处理数据的方式。
---- 新智元报道 编辑:LRS 【新智元导读】传统的帧插值通常都是在两张极其相似之间生成图像。最近Google提出的FLIM模型能够对动作变化幅度较大的两张照片进行帧插值来生成视频:首次引入Gram损失,不仅锐度提升,细节也拉满! 帧插值(Frame Interpolation)是计算机视觉领域的一项关键任务,模型需要根据给定的两个帧,来预测、合成平滑的中间图像,在现实世界中也有极大的应用价值。 常见的帧插值应用场景就是对提升一些帧率不够的视频,一些设备都配有专门的硬件对输入视频的帧率进行
领取专属 10元无门槛券
手把手带您无忧上云