0x00 前言 周末闲来无事,想到从13年接触大数据这个名词,到现在也有4年的时间了,随便聊一聊自己和大数据接触的那些经历。 0x01 大数据 “什么是大数据?” 这个问题其实挺难回答的,因为随着技术和时代的变化,一些名词总是被赋予不同的概念,大数据也是,在居士的认知历程中,大数据的概念在某个时期有很广的含义,然后过了一段时间之后,就被划分出来了一些,然后又被划分出来一些,不知道以后还会是什么样子。 居士在这里聊一下自己对于大数据不同阶段的认识。 2013年初 2013年初,刚接触大数据的概念,当时最
主讲嘉宾:张华平 主持人:中关村大数据产业联盟 副秘书长 林春雨 承办:中关村大数据产业联盟 嘉宾简介:张华平博士,副教授,北京理工大学大数据搜索与挖掘实验室主任,研究生导师,知名汉语分词系统ICTCLAS的创始人,中国计算机学会YOCSEF委员及普及工委委员,中国中文信息学会社会媒体处理专业委员会常务委员,首都师范大学,辽宁师范大学客座教授,北京市重点产业知识产权联盟专家、同时担任《计算机学报》、《计算机研究与发展》、中国科技论文在线等杂志的特邀评审专家。研究方向为:大数据搜索与挖掘、自然语言处理、社交
腾讯科技讯 7月9日,美国《连线》杂志近日刊登了一篇关于大数据的评论文章。作者认为,如果缺乏对人们现实生活的实地调查,大数据没有什么意义。 在短短的几十年里,“技术天才”与社会的关系已经改变:他们从
数据猿导读 从大数据服务商的角度来看,有两个关键的发展方向,一方面是通过技术提高准入门槛,形成核心竞争力;另一方面,通过透明化的大数据服务引导行业良性发展。前者是大数据企业安身立命的根本,后者则直接帮
大数据分析仍处于初级阶段,我们还没有深入应用数据驱动决策。在这里,我们讲讨论当前的痛点以及如何用更好的方式应用大数据。 大数据为企业提供了一个更好的提高生产力和收入的机会。然而,企业在大数据收集上就遇到了麻烦。2012年,通过对300位高管和经理们的调查,清楚的展示了企业在管理大数据过程中的挑战和困难。下面是调查的要点: 66%的受访者希望企业里可以有更多的人使用分析工具。 59%的受访者认为,现有的分析框架处理大数据太慢了。 57%的受访者认为他们的分析框架无法与大数据的流入网络的速度匹配。 55%的
1998年,“大数据”概念首次出现在美国《科学》杂志中。近20年来,大数据浪潮一波波向世人扑面而来。有人形容,大数据就像一片无边无际的大海,海面一浪高过一浪,而浪潮之下深不见底。
对于大数据稍有了解的人应该知道,大数据主要的编程语言,是使用Java来完成的,而Java之外,掌握一定的Scala,在大数据开发学习当中,能够更好地掌握相关技术框架。那么Scala对于大数据开发重要吗?今天我们来给大家一些Scala基础学习建议。
在当今的大数据时代,不仅IT行业的人们需要了解与大数据相关的知识,而且传统行业的从业者和普通大学生也应了解某些大数据知识。新的基础架构计划未来,大数据技术将开始得到全面应用,大数据还将重塑整个产业结构。
顾名思义大数据是一个以数据为核心的产业。大数据产业生成流程从数据的生命周期的传导和演变上可分为这几个部分:数据收集、数据储存、数据建模、数据分析、数据变现。
随着大数据炒的越来越火热,很多大学已经陆续开设了大数据相关课程。0基础学习大数据路线是什么呢?加米谷大数据理论+代码+实战+实操的独有课程体系,下面是加米谷的0基础大数据开发课程大纲:
近两年来人们聊天的很多话题中都会带有大数据这个词,或是某个行业的数字是从大数据中得出的,那么大数据是不是老百姓们理解的有关部门从每个行业的总量中统计分析出来的数据吗?那这个数据的可靠性强吗?在人们还没有搞明白大数据的情况下,又出现了一个海量数据,海量数据与大数据的关系是什么,他们有什么关联吗?还是大数据的升级版才是海量数据,今天来聊一下海量数据与大数据的关系吧!
大数据说的那么悬,其实主要是做三件事:对用户的理解、对信息的理解、对关系的理解。
不过大数据学习并不是高深莫测的,虽然它并没有多简单,但是通过努力,零基础的朋友也是完全可以掌握大数据的。
2015中国大数据技术大会(BDTC 2015)于12月10日在北京召开,会上CCF大数据专家委员会(以下简称“大专委”)发布了《中国大数据技术与产业发展白皮书(2015)》,并对2016年大数据发展
来源:数据猿 作者: HCR 大数据平台 马亮 博士 ---- 如今,大数据已不再停留于概念畅想阶段,对于大数据的认知与应用也越来越广泛深入,不管是政府还是企业都在加快行业建设与布局,资本市场的助推更是加速了这一进程。 本月初,IBM宣布收购大数据供应商Cleversafe以加强其大数据分析服务能力;10月14日,提供企业智能服务的大数据公司EverString获得B轮6500万美金融资,创下全球大数据商业智能领域最大的一起融资。全球范围内的资本加速入局,一时间让大数据商业应用领域的飓风再次强势来袭!
现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己?
场景 我们在生活或工作中会碰到以下情景:公司的女神安娜一直喜欢吃哈根达斯冰激凌,几乎每天要买一杯,但某一天,她却拿着一个DQ冰雪皇后品尝得津津有味;公司屌丝程序员李甲上班早,加班多,完成任务代码质量高,公司团建活动也积极参与,连续多个季度是公司的优秀员工,突然某一天,态度坚决提出离职,说要回家支教。 分析 我让从事大数据服务的朋友来预测和解释,朋友讲,如果按大数据基本算法推测,女神安娜是不会吃DQ的,因为她的行为数据已经表明,她会继续吃哈根达斯;同样,行为大数据分析得出,程序猿李甲很快会晋升为研发经理
要学习大数据,你至少应该知道大数据是什么,大数据将被用在什么领域。通过对大数据的一般理解,你可以了解你是否对大数据感兴趣。
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中科院计算所与CSDN共同协办的2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014)将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据
“大数据”时代的概念最早由世界著名的咨询公司麦肯锡提出。麦肯锡说:“数据已渗透到今天的每个行业和业务功能领域,并已成为重要的生产要素。随着新一轮的生产力增长和消费者盈余浪潮的到来,海量数据的挖掘和使用预示着 “大数据”已经存在于物理学,生物学,环境生态学等领域以及军事,金融,通信等行业,但是由于近年来互联网的发展,信息产业的发展才引起了人们的关注。
近日来,有幸和国内不同行业的CIO(医疗、教育、互联网、金融等)交流了大数据的看法,听了听他们一线用户对于大数据的理解,总体来看他们对于大数据本身充满了积极的热情,并且对于大数据有着深刻的认知包括对于大数据技术、产品以及“瓶颈”,虽然现阶段这些行业企业开展大数据仍然存在一定的阻力,但这些行业CIO普遍看好大数据以及其未来行业的发展。 大数据行业前景以及发展不做过多的阐述,从大数据的应用现状来看,现在不论哪个行业企业在开展大数据时有许多问题待解决比如如何打通并且获得基于企业内部数据之外的互联网数
导读:大数据已成为媒体与大众关注的新技术,大数据的应用也预示着信息时代将进入一个新阶段,但人们对大数据的认识有一个不断加深的过程。首先从“信息时代新阶段”、数据文化和认识论的高度阐述了对大数据的理解;接着通过对驱动效益和大成智慧的解释,探讨了如何正确认识大数据的价值和效益,并从复杂性的角度分析了大数据研究和应用面临的挑战;最后对发展大数据应避免的误区提出几点看法。 本文关键词:大数据;驱动效应;大成智慧;复杂性 1 大数据兴起预示“信息时代”进入新阶段 1.1 看待大数据要有历史性的眼光 信息时代是相对于
对未来不确定性的恐惧 我们所生活的世界,就像一片混沌(chaos),大数据时代,我们周围更是充斥着各种不同的理论、知识、信息和噪音,数据爆炸式增长和科技高速发展所带来的冲击,加大了未来的不确定性。当我们接收的数据和信息越多,面临的选择就越多,如若不善于过滤、挖掘和处理,对各种决策就可能会造成负面影响,当然也会放大我们对未来不确定性的恐惧。小到个人命运大到国家前途,都是在这样一片混沌中煎熬着。 如何从混沌中发现规律,成为预测未来的“先知”,抑或是少出几只黑天鹅?是历代人类的梦想,不管是古人的占卜、算命还是现在的专家系统、商业智能、数据挖掘、机器学习、人工智能、智慧地球、智慧城市等应用,都源于我们对未来不确定性的恐惧。当然还有应对当前管理走向的失控,软件在加速吞噬世界,而大部分人类对其原理和特性却知之甚少,就像华尔街的金融交易一样,系统越复杂出现黑天鹅的概率就会增大;社交网络的实时性打破了时空限制,信息的流动速度和广度让也管理者越发难以掌控。随着舍恩伯格教授《大数据时代》一书的面世,给我们带来了“醍醐灌顶”式的认知洗礼,难道抓住大数据这根救命稻草,我们就有机会做“先知”?从而也更有能力把自己和周遭世界管理得更好吗?在一定程度上是这样的,但我们也要知道,任何技术都是把双刃剑。 舍恩伯格其实没有机器学习背景,书上所说的某些内容也是有争议的,不过在教育民众和政府官员科普方面,还是具有重要意义,至少让大家知道了什么是大数据,也能在一定程度上促使我们思考大数据的价值和潜力,从而提升大数据应用水平以应对管理失控和黑天鹅等问题。
大数据一词最近几年热度不减,越来越多人谈论它,越来越多的公司开始在其中进行投资。 职业社交网站LinkedIn最近发布的一份针对其3.3亿用户档案分析报告显示,在2014年最热门的25项职业技能中,排名榜首的就是“统计分析和数据挖掘”。考虑到万物互联、云计算、智能设备、机器学习等不断涌现的科技潮流词汇以及由此积累的庞大数据,与大数据紧密相连的数据科学家受到职场热捧也就不难理解了。 从薪酬的角度来看,美国一项调查显示,2014年,数据科学家的平均年薪是12.3万美元,比上一年有大幅上升。C
随着信息技术和网络技术的快速发展,人类所存储的数据越来越多,数据已经从量变走向了质变,成为了“大数据”(Big Data)。大数据概念首见于1998年《科学》(Science)中的《大数据的管理者》(A Handler for Big Data)一文。 2008年《自然》(Nature)的“大数据”(“Big Data”)专刊之后,大数据便爆发了,成为了学术、产业和政府各界甚至大众的热门概念,美国等发达国家已经制定并实施大数据战略。 刘红、胡新和指出,大数据带来了第二次数据革命,使得万物皆数的理念得以实
大数据技术涉及内容庞杂,应用领域广泛,各领域和方向采用的关键技术差异性也会较大。本文从数据科学和大数据关键技术体系角度,来说说大数据的核心技术什么。
随着大数据应用的不断推进,数据开始被视为重要的战略资源,在政治领域数据的所有权是一种新的权利源泉。围绕原始数据的占有权和发布权的斗争将成为一个持久性的政治议题。随着大数据在中国的不断发展,各个地方都开始兴建大数据中心,但对于大数据中心建设,更多地还停留在“建机房、上设备、堆数据”的阶段,忽视了大数据强调的是对数据的分析和应用。西安弈聪信息技术有限公司(简称:弈聪软件)创始人卓建超认为,当前一些地方政府建设的大数据平台很多是过去政府共享数据平台的“翻版”。由于目前尚无对“大数据”的标准界定,政府部门对大数据的认识存在混乱,有将开放数据等同于大数据,有将任何“大”的政府数据集的发布都当作是大数据。政府推动大数据平台建设的首要目的不是推动大数据应用,而是统一政府信息基础设施,实现各部门数据的互联互通。事实上很多开放数据只是离散的“小数据”,并不具备大规模、未经处理和非结构化等大数据的基本特征,且很多通过开放数据机构发布的在线数据集仅仅是一个可用的样本集。
另外,你也要考虑时间、精力、金钱等各方面的投入情况。学习和掌握大数据相关技术也非一朝一夕之事,不可能一蹴而就,一般的培训课程只能达到入门级别的介绍和讲解,真正要学会并很好地运用大数据技术你还需要后续更深入的学习和大量的实践。所以需要你一个良好的学习规划。
在昨天(4月24日)的百度技术开放日上,李彦宏现身并推出了百度大数据引擎。这在百度,表明对相关产品最高的重视了。 这个发布是什么意思呢?简单地讲,大数据引擎将百度在大数据的数据、能力和技术开放给行业,行业可以近身距离甚远的大数据盛宴,百度则寻到了一个新的增长点。 大数据引擎三件套 百度大数据引擎一共分三个部分。 开放云:百度的大规模分布式计算和超大规模存储云。过去的百度云主要面向开发者,大数据引擎的开放云则是面向有大数据存储和处理需求的“大开发者”。 百度的开放云拥有超过1.2万台的单集群,超过阿里飞天计
中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处理系统实现大数据应用的效率较低,成本和能耗较大
作者|David Hoffer 译者|Sophie 校对|Chenlu 编辑|Ivy 导读 要深入理解大数据,需要提高数据的可视化水平。在此过程中,数据可以变得更具可塑性、可行性,最终更加
<数据猿导读> 中国统计信息服务中心主任江青在2016年中国信息通信大数据大会上主要主要进行了十三五规划中对大数据纲要的解读。江青讲到,有了政策的有力支持,企业完善大数据产业公共服务支撑体系和生态体系
如今,大数据已不再停留于概念畅想阶段,对于大数据的认知与应用也越来越广泛深入,不管是政府还是企业都在加快行业建设与布局,资本市场的助推更是加速了这一进程。全球范围内的资本加速入局,一时间让大数据商业应用领域的飓风再次强势来袭!
如何从混沌中发现规律,成为预测未来的“先知”,抑或是少出几只黑天鹅?是历代人类的梦想。不管是古人的占卜、算命还是现在的专家系统、商业智能、数据挖掘、机器学习、人工智能、智慧地球、智慧城市等应用,都源于我们对未来不确定性的恐惧。 随着舍恩伯格教授《大数据时代》一书的面世,给我们带来了“醍醐灌顶”式的认知洗礼,难道抓住大数据这根救命稻草,我们就有机会做“先知”?从而也更有能力把自己和周遭世界管理得更好吗?在一定程度上是这样的,但我们也要知道,任何技术都是把双刃剑。 大数据泡沫:泡沫是必然但有其深远意义 甲骨文公
导读:中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处理系统实现大数据应用的效率较低,成本和能耗较大,而且难以扩展,这些挑战大多来自数据本身的复杂性、计算的复杂性和信息系统的复杂性。李国杰认为,发展大数据不要一味追求“数据规模大”,不要“技术驱动”,要“应用为先”,不能抛弃“小数据”方法,同时要高度关注构建大数据平台的成本。 以下内容节选自李国杰院士《对大数据的再认识》一文: 从复杂性的角度看大数据研
导读:中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处理系统实现大数据应用的效率较低,成本和能耗较大,而且难以扩展,这些挑战大多来自数据本身的复杂性、计算的复杂性和信息系统的复杂性。李国杰认为,发展大数据不要一味追求“数据规模大”,不要“技术驱动”,要“应用为先”,不能抛弃“小数据”方法,同时要高度关注构建大数据平台的成本。 从复杂性的角度看大数据研究和应用面临的挑战 大数据技术和人类探索复杂性的努力有
6月19-20日,由中国通信标准化协会主办,中国通信标准化协会大数据技术标准推进委员会(CCSA TC601)承办的首届“数据智能大会”在京召开。
之前找实习还有秋招的时候看了不少大神的帖子,现在也来回馈一下~ 感觉这方面帖子也不多。
作者|杜圣东 “数据科学家走在通往无所不知的路上,走到尽头才发现,自己一无所知。”-Will Cukierski,Head of Competitions & Data Scientist at Kaggle 最近不少网友向我咨询如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题。由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文从数据科学和大数据关键技术体系角度,来说说大数据的核
在过去的时间里,我们听到越来越多的公司,在越来越多的行业里,用着他们的内外部数据,用他们的大数据处理技术,帮助用户解决了他们的问题。
当前,安防大数据的应用也越来越多,但真正将大数据的挖掘和应用落到实处,转变为商业模式的还是很少,目前很多大数据概念都是噱头。后期安防厂家会进行分化,部分传统安防厂家更加专注于某固定安防领域继续深耕,专注于产品和技术,一部分安防厂家会向大安防集成平台转变,专注于业务整合和数据分析处理。
近日,著名数学家、中国科学院院士、北京大数据研究院院长鄂维南教授,带来“信息化、大数据、智能化”的主题报告。报告从大数据和人工智能的发展入手,探讨大数据与各行业和领域的深度融合,以及大数据的技术创新和产业发展之道。鄂院士指出,“工业化的核心是出现了‘会劳动的机器’,而智能化的核心将是创造出‘会学习的机器’。这将对很多领域带来彻底的改变。下一阶段人类生产力显著提高最主要的机会就在于智能化。”
大数据工程师是利用大数据技术处理大量数据的专业技术人员,他们负责数据的采集、清洗、分析、治理、挖掘,并对这些数据加以利用、管理、维护和服务。大数据工程师的工作内容包括但不限于数据处理、数据分析、架构设计、技术创新、团队协作和业务理解等多个方面。
当前以大数据、人工智能、区块链等为代表的信息技术变革日新月异,国家层面上也相继印发《促进大数据发展行动纲要》及《国家信息化发展战略纲要》等文件,国内科研院所与互联网企业抓住机遇在大数据建设方面成为弄潮儿。数字经济的发展,离不开大数据产业基础。中国要综合运用互联网、大数据、人工智能等技术,发挥数据的最大作用,有效促进政府治理体系和治理能力的提升。
或许在生活或工作中会碰到以下情景:公司的女神安娜一直喜欢吃哈根达斯冰激凌,几乎每天要买一杯,但某一天,她却拿着一个DQ冰雪皇后品尝得津津有味;公司屌丝程序员李甲上班早,加班多,完成任务代码质量高,公司
众所周知,通过计算每时每刻都会产生大量的用户数据。通过社交网络数据库和GPS(全球定位系统),每个人使用某些应用程序时所在的位置,以及他们的行为,观点,兴趣和所有需求都被搜索引擎记录了下来。
导读:第四次工业革命以美国的工业互联网、德国的工业4.0为代表。中国也提出了“中国制造2025”的发展纲要。大数据如何助理中国工业4.0的发展,工业大数据从哪里来?大数据对于工业、制造业的价值又在哪里
最近几年,我跟很多创业者交流,发现创业最艰难的地方,莫过于创业项目难以实现商业价值。很多时候技术实现了、产品做好了,然后千辛万苦做运营,各种补贴、各种宣传,但是用户就是不买账,活跃度差、留存率低。 很多时候,我们不是不够努力,可是如果方向错了,再多努力似乎也没有用。阿里内部有句话说的是“方向对了,路就不怕远”,雷军也说过“不要用你战术上的勤奋,掩盖你战略上的懒惰”。这两句话都是说,要找好方向、找准机会,不要为了努力而努力,要为了目标和价值而努力。而王兴则更加直言不讳:“很多人为了放弃思考,什么事情都干得出来
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
领取专属 10元无门槛券
手把手带您无忧上云