首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

生成模型&判别模型

#生成模型 #判别模型机器学习中的判别式模型和生成式模型目录:基本概念用例子说明概念判别式模型和生成式模型的区别二者所包含的算法在机器学习中,对于有监督学习可以将其分为两类模型:判别式模型和生成式模型。...但是,生成式模型的概率分布可以有其他应用,就是说生成式模型更一般更普适。不过判别式模型更直接,更简单。两种方法目前交叉较多。由生成式模型可以得到判别式模型,但由判别式模型得不到生成式模型。3....判别式模型和生成式模型的区别3.1 判别式模型和生成式模型的对比图图片上图左边为判别式模型而右边为生成式模型,可以很清晰地看到差别,判别式模型是在寻找一个决策边界,通过该边界来将样本划分到对应类别。...生成式模型的特点:生成式模型学习的是联合概率密度分布 P(X,Y) ,可以从统计的角度表示分布的情况,能够反映同类数据本身的相似度,它不关心到底划分不同类的边界在哪里。...生成式模型的学习收敛速度更快,当样本容量增加时,学习到的模型可以更快的收敛到真实模型,当存在隐变量时,依旧可以用生成式模型,此时判别式方法就不行了。

33500

生成模型_常见的模型生成方式

(一)生成模型简介 1、什么是生成模型 在概率统计理论中,生成模型是指能够在给定某些隐含参数的条件下,随机设工程观测数据的模型,他给观测值和标测数据序列指定一个联合概率分布,在机器学习中,生成模型可以用用来直接对数据进行建模...,如根据某个变量的概率密度函数进行数据采样,也可以用来建立变量间的条件概率分布,条件概率分布可以由生成模型根据贝叶斯定理形成。...对于生成模型,可以分为两种类型, (1)可以完全表示出确切的分布函数 (2)第二种生成模型智能做到新数据的生成,二数据分布函数是模糊的。...生成模型的作用: (1)生成模型具有表现和处理高维概率分布的能力,而这种能力可以有效应用在数学或工程领域。 (2)与强化模型结合。 (3)通过提供生成数据,优化完善半监督学习。...生成模型: 自动编码器 变分自动编码器 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/166893.html原文链接:https://javaforall.cn

79220
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    判别模型 和 生成模型

    【摘要】 - 生成模型:无穷样本==》概率密度模型 = 产生模型==》预测 - 判别模型:有限样本==》判别函数 = 预测模型==》预测 【简介】 简单的说,假设o是观察值,q是模型...适用于较多类别的识别 判别模型的性能比生成模型要简单,比较容易学习 - 缺点: 不能反映训练数据本身的特性。...通过使用贝叶斯rule可以从生成模型中得到条件分布。 如果观察到的数据是完全由生成模型所生成的,那么就可以fitting生成模型的参数,从而仅可能的增加数据相似度。...但数据很少能由生成模型完全得到,所以比较准确的方式是直接对条件密度函数建模,即使用分类或回归分析。 与描述模型的不同是,描述模型中所有变量都是直接测量得到。...】 由生成模型可以得到判别模型,但由判别模型得不到生成模型。

    1.1K60

    Django User模型扩展

    通常情况下,Django提供的User模型能够满足我们大部分的需求,但是有时候我们需要给User添加一些格外的功能和信息。 Django支持两种方式来扩展User模型。...代理模型 如果只是需要添加一些功能性操作,可以基于User创建一个代理模型。 关联模型 如果是需要添加格外的字段信息,则可以创建一个与User关联的模型,两者之间的关系为1对1。...,则可以Django的关联模型获取数据: >>> u = User.objects.get(username='fsmith') >>> mobile = u.profile.mobile 为了在管理后台中将...,它们只是与User模型存在一对一的关联而已。...因此,当创建用户的时候,profile并不会自动创建,可以通过django.db.models.signals.post_save来创建或者更新profile模型。

    48510

    判别模型与生成模型

    概述 监督学习方法可以分为生成方法(generative approach)和判别方法(discriminative approach),所学到的模型分别称为生成模型(generative model)...生成模型 生成方法由数据学习输入和输出联合概率分布 ? ,然后求出后验概率分布 ? 作为预测的模型,即生成模型。这里以朴素贝叶斯为例,我们要求的目标可以通过: ?...是用于归一化的"证据"因子。对于给定样本 ? 。证据因子 ? 与类标记无关,因此估计 ? 的问题就转化为如何基于训练数据来估计先验 ? 和似然 ? 。...---- 判别模型与生成模型比较 判别模型: 优点: 1)仅需要有限的样本。节省计算资源,需要的样本数量也少于生成模型。...2)生成模型收敛速度比较快,即当样本数量较多时,生成模型能更快地收敛于真实模型。 3)生成模型能够应付存在隐变量的情况,比如混合高斯模型就是含有隐变量的生成方法。

    1K30

    生成模型和判别模型

    生成模型的指导思想是贝叶斯,判别模型的指导思想是频率学派 生成模型 生成模型(Generaive Model)一般以概率的方式描述了数据的产生方式,通过对模型采样就可以产生数据。...一个简单例子:给定平面上一系列点,我可以认为这些点是根据一个二维高斯分布产生的,这就是一个生成模型,它可以产生数据。...对于分类来说:生成模型观察x与c的整体分布,通过对每一个c建模,最终选择能使结果最优的c作为最终分布P(x,c)。训练完模型后,每新来一个数据,就根据所得到的P(x,c)与x的特征,来判断c。...判别模型 判别模型(Discriminative Model)对数据之间的映射关系建模,而不考虑数据本身是如何生成的。...常见模型的分类 生成模型 高斯混合模型(和其他类型的混合模型) 隐马尔可夫模型 贝叶斯网络(例如Naive bayes,Autoregressive模型) LDA 玻尔兹曼机器(例如受限玻尔兹曼机器,深信念网络

    1.1K10

    生成模型和判别模型

    生成方法和判别方法 监督学习方法又分生成方法(Generative approach)和判别方法(Discriminative approach),所学到的模型分别称为生成模型(Generative Model...基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。...缺点是不能反映训练数据本身的特性 生成方法 由数据学习联合概率密度分布 ,然后求出条件概率分布 作为预测的模型,即生成模型: image.png 基本思想是首先建立样本的联合概率概率密度模型...这样的方法之所以成为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。用于随机生成的观察值建模,特别是在给定某些隐藏参数情况下。典型的生成模型有:朴素贝叶斯法、马尔科夫模型、高斯混合模型。...生成方法的特点: 从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度; 生成方法还原出联合概率分布,而判别方法不能; 生成方法的学习收敛速度更快、即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型

    71130

    判别模型和生成模型

    判别模型和生成模型总结与对比: 判别模型(Discriminative Models) 生成模型(Generative Models) 特点 在有限样本条件下建立判别函数,寻找不同数据间的最优分类面,...目标是实现分类 首先建立样本的联合概率分布,再利用模型进行推理预测。...要求已知样本无穷或尽可能的大 区别 估计条件概率分布P(y\x) 估计联合概率分布P(x,y) 联系 生成模型可得到判别模型 判别模型得不到生成模型 常见模型 ME、CRF、LR、SVM、Boosting...2.能够清晰地分辨类别之间的差异特征。3.可用于多类对的学习和识别。4.简单、容易学习。 1.面向整体数据的分布。2.能够反映同类数据本身的相似度。3.模型可以通过增量学习得到。...黑盒操作:变量间的关系不可视 1.生成模型分类器需要产生的所有变量的联合概率,资源使用量大。2.分类性能不高,类别识别精度有限。3.学习和计算过程复杂。

    57540

    模型分类之生成模型与鉴别模型

    一、生成模型与判别模型概述 生成模型是通过联合概率分布来求条件概率分布,而判别模型是通过数据直接求出条件概率分布,换句话说也就是,生成模型学习了所有数据的特点,判别模型则只是找出分界。 ?...二、生成模型与鉴别模型详细介绍 ? ? 三、生成模型与判别模型的优缺点 概率图分为有向图(bayesian network)与无向图(markov random filed)。...通过使用贝叶斯规则可以从生成模型中得到条件分布。如果观察到的数据是完全由生成模型所生成的,那么就可以拟合生成模型的参数,从而仅可能的增加数据相似度。...所以生成模型和判别模型的主要区别在于:添加了先验概率 即:生成模型:p(class, context)=p(class|context)*p(context) 判别模型:p(class|context)...; (5)判别模型的性能比生成模型要简单,比较容易学习。

    1.4K20

    深度生成模型

    本次课将首先介绍生成模型的概念以及适用场景。进一步讲解基于能量的模型,包括受限玻尔兹曼机(RBM)和深度玻尔兹曼机等。它们既是早期的神经网络模型,也是经典的生成模型。...2 基于能量的模型:玻尔兹曼机 3 变分自编码器 4 生成对抗网络(GAN) 1 生成模型介绍 下图展示了生成模型的分类。...但是对于高维分布,很难去回答究竟建模效果如何。比如对于图像数据我们设计一个模型并学习到了 的参数,那么 究竟对数据刻画有多好?一种测试方法是看它生成的图像到底怎么样,是不是像原始的图像。...要把半监督学习做好,就要刻画这些无标签的数据和有标签的数据在空间中是如何分布和生成的。 多模态输入以及现实的生成任务。比如说做一些艺术创作,我们需要生成一些现实的图像。...生成对抗网络来源于博弈论中的二人零和博弈问题。在解优化问题的时候,相当于训练时固定一方,优化另一个模型的参数;然后再固定另一方,优化当前模型的参数。如此交替迭代,最终来估计出来数据的分布。

    1.1K10

    理解生成模型与判别模型

    导言 我们都知道,对于有监督的机器学习中的分类问题,求解问题的算法可以分为生成模型与判别模型两种类型。但是,究竟什么是生成模型,什么是判别模型?不少书籍和技术文章对这对概念的解释是含糊的。...在今天这篇文章中,我们将准确、清晰的解释这一组概念。 第一种定义 对于判别模型和生成模型有两种定义,第一种定义针对的是有监督学习的分类问题。...一般来说,我们把使用第一种模型的分类器称为生成式分类器,把使用第二种和第三种模型的分类器称为判别式分类器。 第二种定义 除此之外,对生成模型和判别模型还有另外一种定义。...生成模型是已知样本的标签值y,对样本的特征向量x的条件概率进行建模,即对条件概率p(x|y)建模,它研究的是每种样本服从何种概率分布。...根据这种定义,生成模型可以用来根据标签值y生成随机的样本数据x。

    97630

    理解生成模型与判别模型

    1536738846贝叶斯-01.png 导言 我们都知道,对于有监督的机器学习中的分类问题,求解问题的算法可以分为生成模型与判别模型两种类型。但是,究竟什么是生成模型,什么是判别模型?...不少书籍和技术文章对这对概念的解释是含糊的。在今天这篇文章中,我们将准确、清晰的解释这一组概念。 第一种定义 对于判别模型和生成模型有两种定义,第一种定义针对的是有监督学习的分类问题。...一般来说,我们把使用第一种模型的分类器称为生成式分类器,把使用第二种和第三种模型的分类器称为判别式分类器。 第二种定义 除此之外,对生成模型和判别模型还有另外一种定义。...根据这种定义,生成模型可以用来根据标签值y生成随机的样本数据x。...获取码】SIGAI0822 [54]【AI就业面面观】如何选择适合自己的舞台?

    1K20

    概率生成模型

    对于一个分类问题,首先要有数据,然后需要找到一个模型f,定义loss function,最后找到表现最好的f的参数。 从概率上讲,分类问题其实就是根据训练数据估计新的数据属于哪一类的概率。...在讲概率生成模型前需要介绍高斯分布函数。 ? 输入是特征向量x,输出是x的概率,高斯函数的形状由均值和协方差矩阵决定。 ? ?...首先假定训练数据的点服从高斯分布,那么我们需要找到训练数据背后的高斯分布,这样就能够给出新数据的概率。 如何找高斯分布模型呢?——使用极大似然估计的方法。 ? ? 得到模型后就可以做分类了。 ?...事实上,对上述数据的分类准确率只有47%,即使考虑到其他维度的情况,准确率也只有64%. 因此需要改进模型,即两个高斯分布共享协方差矩阵,这样模型的参数就更少了。 ? ?...因为两个协方差矩阵是共享参数的: ? 最终得到z的表达式,其实是线性分类器。在概率模型中通过计算均值、协方差矩阵等来得到模型参数, 所以直接从训练数据中得到线性模型的参数不更好吗? ?

    69430

    扩展指令微调语言模型

    另一个解释是,多任务指令微调的大部分改进来自于模型学习更好地表达它已经从预训练中获得的知识,而超过282个任务对此没有太大帮助。...通过绘制这样的扩展曲线,可以洞察进一步扩大模型规模和任务数量如何提高性能。将模型规模扩大一个数量级(尽管具有挑战性)预计会带来显著的性能提升。扩大微调任务的数量也应该提高性能,尽管可能只是逐步地改进。...总体而言,绘制的扩展曲线表明未来的工作应该继续扩展指令微调。 使用链式思维注释进行微调 表 4 作者首先展示了将九个具有链式思维(CoT)注释的数据集包含在微调混合中如何提高推理能力。...表格4还展示了如何将CoT提示与自我一致性(SC)结合起来,在多个基准上实现了新的最佳表现。例如,在MMLU基准上,Flan-PaLM 540B实现了75.2%的成绩。这相比于先前的模型有明显优势。...作为另一个亮点,作者实现的整体最强模型是将指令微调与U-PaLM模型中使用的UL2持续预训练相结合。

    35930

    生成式模型与辨别式模型

    生成式模型是一种能够学习数据生成过程的模型,它可以学习输入数据的概率分布,并生成新的数据样本。 更具体地说生成模型首先从训练数据中估计类别的条件密度P(x|y = k)和先验类别概率P(y = k)。...他们试图了解每个分类的数据是如何生成的。...为生成模型允许我们从学习的输入分布P(x|y)中生成新的样本。所以我们将其称之为生成式模型。最简单的例子是,对于上面的模型我们可以通过从P(x|y = 1)中采样来生成新的狗的图像。...区别和优缺点 生成式模型和辨别式模型的主要区别在于它们学习的目标不同。生成式模型学习输入数据的分布,可以生成新的数据样本。辨别式模型学习输入数据和输出标签之间的关系,可以预测新的标签。...生成式模型: 生成模型给了我们更多的信息,因为它们同时学习输入分布和类概率。可以从学习的输入分布中生成新的样本。并且可以处理缺失的数据,因为它们可以在不使用缺失值的情况下估计输入分布。

    32020

    序列生成模型(一):序列概率模型

    应用: 样本生成在生成式模型中非常重要,例如,在自然语言生成、图像生成、音乐生成等任务中,我们希望模型能够生成符合特定规律或者语境的新序列。   解决这两个问题的方法通常依赖于具体的序列概率模型。...这些模型在深度学习中被广泛应用,能够学习并捕捉序列数据中的复杂关系,从而进行概率密度估计和样本生成。 一、序列概率模型 1....这种分解的思想为使用自回归生成模型(如循环神经网络、变压器等)建模序列提供了理论基础。这些模型在每个时刻上生成一个新的变量,依赖于前面时刻的变量,从而能够捕捉到序列中的复杂依赖关系。...自回归生成模型   在给定一个包含 N 个序列数据的数据集 \mathcal{D} = \{\mathbf{x}^{(n)}_{1:T_n}\}_{n=1}^{N} 的情况下,序列概率模型的学习目标是通过最大化整个数据集的对数似然函数来学习模型参数...在深度学习中,通常采用神经网络来建模这个多项分布的参数 \boldsymbol{\theta}_t ,两种主要的自回归生成模型是 N 元统计模型和深度序列模型。

    20510

    生成式模型入门:训练似然模型的技巧

    机器之心编译 参与:李志伟、Geek AI 生成模型不止有 GAN,本教程讨论了数学上最直接的生成模型(易处理的密度估计模型)。读罢本文,你将了解如何定量地比较似然模型。...散度最小化:生成模型的一般框架 生成模型(其实都是统计机器学习模型)旨在从一些(可能是条件的)概率分布 p(x) 中取样本数据,并学习对 p(x) 进行近似的模型 pθ(x)。...在散度最小化的框架下考虑生成模型是很有用的,因为这让我们可以仔细思考:为了进行训练,我们对生成模型有何要求。...无论(最优编码)如何,我们都会支付 H(p) nat 的「基本费用」,我们还会为 p_θ 与 p 的任何偏差支付额外的「精细的」KL(p,p_θ) nat。...当然,我们通常不希望我们的生成模型过拟合这种极端情况,但在调试生成模型时,记住这个上限,作为一种检合理性检查是很有用的。

    86820

    【生成模型】关于无监督生成模型,你必须知道的基础

    (3)在概率模型估计任务中,对于一个可以生成样本的概率模型,我们使用样本对概率模型的结构、参数进行学习,使得概率模型生成的样本与训练样本最相似。...2 判别模型与生成模型 本节我们在监督学习的范围内介绍判别模型与生成模型。...另外,生成模型可以处理含有隐变量的情况,而判别模型对此无能为力。生成模型也可以通过计算边缘分布 而检测某些异常值。但实践中,生成模型计算开销一般比较大,而且多数情况下其效果不如判别模型。...3 无监督生成模型 根据前两节,生成模型意味着对输入特征X和标签信息Y的联合分布进行建模,无监督学习意味着不存在标签信息,则在无监督生成模型中,希望对输入特征X的概率密度函数p(X)建模。...统计机器学习 总结 生成模型是一个非常有趣的领域,其中的内容也不只是对抗生成网络,也包括变分自编码器、流模型等,今天详细定义了一下什么是无监督生成模型,使大家有一个初步印象。

    1.8K10
    领券