MNIST镜像是指用于训练和测试机器学习模型的图像数据集。下面是生成正确的MNIST镜像的步骤:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载MNIST数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 创建一个新的TensorFlow图
graph = tf.Graph()
with graph.as_default():
# 定义输入和输出的占位符
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# 定义模型结构
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
logits = tf.matmul(x, W) + b
predictions = tf.nn.softmax(logits)
# 定义损失函数和优化器
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)
# 定义准确率评估指标
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
# 初始化变量
init = tf.global_variables_initializer()
# 创建一个会话并运行图
with tf.Session(graph=graph) as sess:
sess.run(init)
# 训练模型
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# 在测试集上评估模型
test_accuracy = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Test Accuracy: {:.2f}%".format(test_accuracy * 100))
请注意,以上代码和产品链接仅供参考,具体的实现方式和产品选择可能因个人需求和偏好而有所不同。
领取专属 10元无门槛券
手把手带您无忧上云