首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何用tf.estimator保存tensorflow模型

使用tf.estimator可以方便地保存tensorflow模型,以下是具体步骤:

  1. 首先,定义一个Estimator模型,可以是预训练好的模型或者自定义模型。这个模型需要使用tf.estimator.Estimator类进行封装。
  2. 在定义Estimator模型时,可以通过tf.estimator.EstimatorSpec指定模型的训练、评估和预测功能。
  3. 在训练模型时,可以使用tf.estimator.train_and_evaluate函数进行训练和评估。这个函数会自动保存训练过程中的模型。
  4. 如果需要保存模型的特定版本或者在不同的时间点保存不同的模型,可以使用tf.estimator.Exporter进行模型的导出。通过定义不同的Exporter,可以将模型导出为SavedModel格式、TensorFlow Serving格式等。
  5. 可以通过设置tf.estimator.RunConfig中的参数来指定模型的保存路径和保存频率。例如,设置tf.estimator.RunConfig(save_checkpoints_steps=1000)来每1000个训练步骤保存一次模型。
  6. 在预测时,可以使用tf.estimator.Estimator的predict方法加载已保存的模型进行预测。
  7. 腾讯云的相关产品和服务:腾讯云AI Lab为开发者提供了腾讯云的AI能力和服务,包括了TensorFlow等开发工具和平台。具体可以参考腾讯云AI Lab的官方网站:https://ai.qq.com/

总结起来,使用tf.estimator可以方便地保存tensorflow模型。通过定义Estimator模型、设置训练参数和使用Exporter等功能,可以实现模型的保存和导出。在使用过程中,可以根据实际需求设置保存路径和保存频率。腾讯云提供了相关的AI能力和服务,可以进一步扩展模型的应用场景。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

TensorFlow模型持久化~模型保存

下面简单介绍通过tensorflow程序来持久化一个训练好的模型,并从持久化之后的模型文件中还原被保存模型。简单来说就是模型保存以及载入。...1 模型保存 下面用一个简单的例子来说明如何通过tensorflow提供的tf.train.Saver类载入模型: import tensorflow as tf #声明两个变量并计算他们的和 a...其实加不加都可以的,但是最好是还加上,因为Tensorflow模型一般都是保存在以.ckpt后缀结尾的文件中; 在代码中我们指定了一个目录文件,但是目录下会出现4个文件,那是因为TensorFlow会把计算图的结构和图上变量参数取值分别保存...当某个保存TensorFlow模型文件被删除时,这个模型所对应的文件名也会从checkpoint文件中删除。这个文件是可以直接以文本格式打开的: ?...保存了一个新的模型,但是checkpoint文件只有一个 上面的程序默认情况下,保存TensorFlow计算图上定义的全部变量,但有时可能只需要保存部分变量,此时保存模型的时候就需要为tf.train.Saver

1.1K00
  • tensorflow保存与恢复模型

    本文由腾讯云+社区自动同步,原文地址 http://blogtest.stackoverflow.club/article/tensorflow_save_restore_model/ ckpt模型与pb...模型比较 ckpt模型可以重新训练,pb模型不可以(pb一般用于线上部署) ckpt模型可以指定保存最近的n个模型,pb不可以 保存ckpt模型 保存路径必须带.ckpt这个后缀名,不能是文件夹,否则无法保存...outputs_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='outputs') # max_to_keep是指在文件夹中保存几个最近的模型...pb模型 保存为pb模型时要指明对外暴露哪些接口 graph_def = tf.get_default_graph().as_graph_def() output_graph_def = graph_util.convert_variables_to_constants...pb 格式模型保存与恢复相比于前面的 .ckpt 格式而言要稍微麻烦一点,但使用更灵活,特别是模型恢复,因为它可以脱离会话(Session)而存在,便于部署。

    1.2K20

    Tensorflow加载预训练模型保存模型

    1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta...0.11后,通过两个文件保存,: MyModel.data-00000-of-00001 MyModel.index 1.3 checkpoint文件 我们还可以看,checkpoint_dir目录下还有...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...个模型文件: tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2) 注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多...,很多时候,我们希望使用一些已经训练好的模型prediction、fine-tuning以及进一步训练等。

    1.4K30

    Tensorflow加载预训练模型保存模型

    1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta...0.11后,通过两个文件保存,: MyModel.data-00000-of-00001 MyModel.index 1.3 checkpoint文件 我们还可以看,checkpoint_dir目录下还有...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...个模型文件: tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2) 注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多...,很多时候,我们希望使用一些已经训练好的模型prediction、fine-tuning以及进一步训练等。

    3K30

    Tensorflow SavedModel模型保存与加载

    这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存...另外如果使用Tensorflow Serving server来部署模型,必须选择SavedModel格式。 SavedModel包含啥?...saved_model.pb 保存 为了简单起见,我们使用一个非常简单的手写识别代码作为示例,代码如下: from tensorflow.examples.tutorials.mnist import...,第三个参数是模型保存的文件夹。...但在摸索过程中,也走了不少的弯路,主要原因是现在搜索到的大部分资料还是用tf.train.Saver()来保存模型,还有的是用tf.gfile.FastGFile来序列化模型图。

    5.4K30

    Tensorflow2——模型保存和恢复

    模型保存和恢复 1、保存整个模型 2、仅仅保存模型的架构(框架) 3、仅仅保存模型的权重 4、在训练期间保存检查点 1、保存整个模型 1)整个模型保存到一个文件中,其中包含权重值,模型配置以及优化器的配置...,这样,您就可以为模型设置检查点,并稍后从完全相同的状态进行训练,而无需访问原始代码 2)在keras中保存完全可以正常的使用模型非常有用,您可以在tensorflow.js中加载他们,然后在网络浏览器中训练和运行它们...3)keras中使用HDF5标准提供基本的保存格式 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt...(框架) 有时候我们只对模型的架构感兴趣,而无需保存权重值或者是优化器,在这种情况下,可以仅仅保存模型的配置 模型的整体的架构情况,返回一个json数据,就是一个模型的架构 json_config=model.to_json...,也就是他的权重,只是保存了网络的架构 3、仅仅保存模型的权重 时候我们只需要保存模型的状态(其权重值),而对模型的架构不感兴趣,在这种情况下,可以通过get_weights()来获取权重值,并通过set_weights

    99620

    Tensorflow】数据及模型保存和恢复

    Tensorflow 是当前最流行的机器学习框架,它自然支持这种需求。 Tensorflow 通过 tf.train.Saver 这个模块进行数据的保存和恢复。它有 2 个核心方法。...a、b、d、e 都是变量,现在要保存它们的值,怎么用 Tensorflow 的代码实现呢?...数据的保存 import tensorflow as tf a = tf.get_variable("a",[1]) b = tf.get_variable("b",[1]) c = tf.get_variable...e %f" % e.eval()) test_restore(saver) 调用 Saver.restore() 方法就可以了,同样需要传递一个 session 对象,第二个参数是被保存模型数据的路径...上面是最简单的变量保存例子,在实际工作当中,模型当中的变量会更多,但基本上的流程不会脱离这个最简化的流程。

    89330

    Tensorflow模型保存与回收的简单总结

    今天要聊得是怎么利用TensorFlow保存我们的模型文件,以及模型文件的回收(读取)。...刚开始接触TensorFlow的时候,没在意模型文件的使用,只要能顺利跑通代码不出bug就万事大吉,但是随着接触的数据量的增加以及训练时间的增长,万一中间由于各种原因(比如显卡线断了,电源线断了,手残点了.../摊手.sh)意外中断,而没有保存模型文件,那一刻想屎的心都有了。 那么问题来了,我们需要重头开始训练模型吗,答案肯定是不用的,当然前提是保存模型文件。...首先说一下这个模型文件通常是二进制格式保存的,那么里面到底是什么东西呢, 其实就是训练数据的根据网络结构计算得到的参数值。等我们再需要的时候,直接提取出来就好了。...TensorFlow模型保存主要由Saver类来控制,接下来我会举个栗子,来说明怎么使用Saver类。下面的代码里面我会顺便把一些基础的问题提一下,了解的同学可以直接看最后两幅图。 ? ? ? ?

    1.2K80

    Tensorflow笔记:模型保存、加载和Fine-tune

    前言 尝试过迁移学习的同学们都知道,Tensorflow模型保存加载有不同格式,使用方法也不一样,新手会觉得乱七八糟,所以本文做一个梳理。从模型保存到加载,再到使用,力求理清这个流程。 1....保存 Tensorflow保存分为三种:1. checkpoint模式;2. pb模式;3. saved_model模式。...pb模型中的变量 var_list = ["input", "label", "beta", "bias", "output"] # 如果有name_scope,要写全名,:"name_scope...模型保存的方法是 # 只有sess中有变量的值,所以保存模型的操作只能在sess内 version = "1/" saved_model_dir = "....我们先说后一个,如果你不光有模型文件,还有源码,可以把源码构建模型那部分复制过来,然后只加载变量就好,这是手动重新搭建网络结构: import tensorflow as tf size = 10 #

    1.8K41

    tensorflow学习笔记(三十四):Saver(保存与加载模型)

    Saver tensorflow 中的 Saver 对象是用于 参数保存和恢复的。如何使用呢? 这里介绍了一些基本的用法。...keys: saver = tf.train.Saver({v.op.name: v for v in [v1, v2]}) #注意,如果不给Saver传var_list 参数的话, 他将已 所有可以保存的...我们都知道,参数会保存到 checkpoint 文件中,通过键值对的形式在 checkpoint中存放着。...tf.global_variables_initializer().run() saver.save(sess, 'test-ckpt/model-2') 我们通过官方提供的工具来看一下 checkpoint 中保存了什么...), sess.run(v2)) # 输出的结果是 2.0 1.0,如我们所望 我们发现,其实 创建 saver对象时使用的键值对就是表达了一种对应关系: save时, 表示:variable的值应该保存

    1.4K80

    浅谈tensorflow模型保存为pb的各种姿势

    一,直接保存pb 1, 首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型与使用模型的解耦,使得前向推导inference...另外的好处就是保存为pb的时候,模型的变量会变成固定的,导致模型的大小会大大减小。...checkpoint是检查点的文件,文件保存了一个目录下所有的模型文件列表 model.ckpt.meta文件保存Tensorflow计算图的结果,可以理解为神经网络的网络结构,该文件可以被tf.train.import_meta_graph...加载到当前默认的图来使用 ckpt.data是保存模型中每个变量的取值 方法一, tensorflow提供了convert_variables_to_constants()方法,改方法可以固化模型结构,...(pb_path=out_pb_path, image_path=image_path) 以上这篇浅谈tensorflow模型保存为pb的各种姿势就是小编分享给大家的全部内容了,希望能给大家一个参考。

    4.5K20

    TensorFlow2.0(12):模型保存与序列化

    (11):tf.keras建模三部曲 模型训练好之后,我们就要想办法将其持久化保存下来,不然关机或者程序退出后模型就不复存在了。...本文介绍两种持久化保存模型的方法: 在介绍这两种方法之前,我们得先创建并训练好一个模型,还是以mnist手写数字识别数据集训练模型为例: import tensorflow as tf from tensorflow...save()方法可以将模型保存到一个指定文件中,保存的内容包括: 模型的结构 模型的权重参数 通过compile()方法配置的模型训练参数 优化器及其状态 model.save('mymodels/mnist.h5...通过save()方法,也可以将模型保存为SavedModel 格式。...='tf') # 将模型保存为SaveModel格式 WARNING:tensorflow:From /home/chb/anaconda3/envs/study_python/lib/python3.7

    1.8K10

    keras模型保存tensorflow的二进制模型方式

    最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。...的.pb的文件并在TensorFlow serving环境调用 首先keras训练好的模型通过自带的model.save()保存下来是 .model (.h5) 格式的文件 模型载入是通过 my_model...= keras . models . load_model( filepath ) 要将该模型转换为.pb 格式的TensorFlow 模型,代码如下: # -*- coding: utf-8 -*....pb格式的文件 问题就来了,这样存下来的.pb格式的文件是frozen model 如果通过TensorFlow serving 启用模型的话,会报错: E tensorflow_serving/core...以上这篇keras模型保存tensorflow的二进制模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考。

    1.1K30
    领券