首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

创建吸引人的统计图表:Seaborn 库的实用指南与示例

,其中 x 轴表示 'x' 列的值,y 轴表示 'y' 列的值。...Example')plt.show()这将生成一个小提琴图,其中 x 轴表示不同的天,y 轴表示总账单,不同性别的数据用不同的小提琴区域表示,并且通过 split 参数分开展示。...plt.show()这将生成一个线性矩阵图,其中每个变量与其他变量两两组合,展示了它们之间的线性关系,并且以散点图的形式呈现。...Example')plt.show()这将生成一个分类散点图,其中 x 轴表示不同的天,y 轴表示总账单,不同性别的数据用不同的标记表示,并且通过 dodge 参数使得数据点可以分开展示。...()这将生成一个分类箱线图,其中 x 轴表示不同的天,y 轴表示总账单,不同性别的数据用不同的颜色和箱线表示。

15910

ggplot2--R语言宏基因组学统计分析(第四章)笔记

4.3.3.3 使用坐标系统来调节和限制X轴和Y轴 坐标系的用途是在计算机屏幕上调整从坐标到二维平面的映射。在ggplot2中可用的不同坐标系中,笛卡尔坐标系和极坐标系是最常用的坐标系。...我们可以使用这些函数及其相应的参数来调整要在绘图中显示的属性。这里我们说明如何使用coord_cartesian()的参数xlim和ylim分别调整X轴和Y轴的极限。...在下面的代码中,我们创建一个新的plot对象p5,并使用coord_cartesian()更改X和Y轴的限制以放大到感兴趣的区域。...公式可以是x~y,这表示将绘图分割成变量x的每个值的一行和变量y的每个值的一列。实现facet_grid(x~y)函数将生成一个矩阵,其中的行和列由x和y的可能组合组成。公式可以是x~....刻面变量可以以参数的形式列出,形式为Facet_wrap(x~y+z)。~符号左边的变量形成行,而右边的变量形成列。Facet_wrap(x~.)的语法。

5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【R语言】高维数据可视化| ggplot2中会“分身术”的facet_wrap()与facet_grid()姐妹花

    facet_grid()形成由行和列面化变量定义的面板矩阵。当有两个离散变量,并且这些变量的所有组合存在于数据中时,它是最有用的。如果只有一个具有多个级别的变量,请尝试facet_wrap()。...这通常比facet_grid()更好地利用了屏幕空间,而且显示基本上是矩形的。 分面图是根据数据类别按照行或者列,或者矩阵分面的方式将散点图,柱形图等基础图标展示四到五维的数据结构。...facet_grid()按照x轴调节取值范围 06 facet_grid()调节y轴的取值范围 ?...facet_grid()按照y轴调节取值范围 07 facet_grid()调节X和Y轴的取值范围 m+facet_grid(vars(drv), vars(cyl),scales="free ") ?...facet_grid()按照x轴和y轴调节取值范围 08 facet_wrap()的矩阵排列 m+facet_wrap(~cyl) ?

    2.9K31

    使用Plotly Express创建快速且漂亮的可视化图表

    本文将介绍如何使用Plotly Express来快速生成各种类型的可视化图表,从简单的散点图到复杂的面向大数据集的图表。什么是Plotly Express?...], dates[-1]], # 指定x轴范围 range_y=[values.min(), values.max()], # 指定y轴范围...使用Plotly Express进行子图布局Plotly Express还支持创建多个子图并将它们组合成一个图形布局。这对于比较不同数据集或者在同一图表中显示多个相关数据非常有用。...(df2, x='X', y='Y', title='Subplot 2', template='plotly'))fig.show()通过这种方式,您可以将多个图表组合在一起,形成一个统一的图形布局,...我们从安装Plotly Express开始,然后演示了如何使用简单的示例数据集创建各种类型的图表,包括散点图、面积图和条形图等。

    21510

    关于Python可视化Dash工具

    连续折线之间的区域被填充; 14、bar:条形图 在条形图中,每行data_frame表示为矩形标记; 15、timeline:时间轴图 在时间轴图中,每一行数据框都表示为日期类型x轴上的矩形标记...表示为类别中的抖动标记; 20、histogram:直方图 在直方图中,每一行data_frame被组合在一起成为矩形标记,以可视化该值的聚合函数histfunc(例如,计数或总和)的1D分布...y(或者x,如果orientation是'h'时); 21、pie:饼图 在饼图中,数据帧的每一行表示为饼图的扇区。...26、scatter_matrix:矩阵散点图 在散点图矩阵(或SPLOM)中,每行data_frame由多个符号标记表示,在2D散点图的网格的每个单元格中有一个,其将每对dimensions...; 28、parallel_categories:并行类别图 在并行类别(或平行集)图中,每行data_frame与其他共享相同值的行组合,dimensions然后通过一组平行轴绘制为折线标记,每个平行轴对应一个

    3.2K10

    数据视化的三大绘图系统概述:base、lattice和ggplot2

    : 分类箱图、条形图 1 Lattice绘图系统 特点:一次成图;适用于关系变量间的交互:在变量z的不同水平,变量y如何随变量x变化。...xyplot() y ~ x | A 散点图矩阵 splom() dataframe 带状图 stripplot() A ~ x或x ~ A 高级绘图中表达式的通常格式:y ~ x | A *...主要变量即为图形的两个坐标轴,其中y在纵轴上,x在横轴上。变形:单变量绘图,用 ~ x 即可;三维绘图,用z ~ x*y;多变量绘图,使用数据框代替y ~ x即可。...1.条件变量的用法~ x | A表示因子A各个水平下数值型变量x的分布情况;y ~ x | A * B表示因子A和B各个水平组合下数值型变量x和y之间的关系。...,可以添加第三个元素,以指定页数 Main/sub 字符型向量,设定主标题和副标题 Panel 函数,设定每个面板要生成的图形 Scales 列表,添加坐标轴标注信息 Strip 函数,设定面板条带区域

    4.4K30

    我用Python的Seaborn库,绘制了15个超好看图表!

    花瓣长度与物种间关系的条形图(基于鸢尾数据集)。 02. 散点图 散点图是由几个数据点组成的图。 使用x轴表示花瓣长度,y轴表示数据集的萼片长度,制作散点图。...这里使用x轴表示物种,y轴表示花瓣长度。...在上图中,每个数据点表示为一个点,并且这些点的排列使得它们在分类轴上不会相互重叠。 在这里,所有萼片宽度数据点以不同的方式代表每个物种的一个点。 12....特征图 特征图可视化了数据集中变量之间的两两关系。 创建了一个坐标轴网格,将所有数值数据点将在彼此之间创建一个图,在x轴上具有单列,y轴上具有单行。...联合分布图 联合分布图将两个不同类型的图表组合在一个表中,展示两个变量之间的关系(二元关系)。

    84330

    数据可视化Seaborn入门介绍

    它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。显然,绘制结果中的上三角和下三角部分的子图是镜像的。...),但实际上接口调用方式和传参模式都是一致的,其核心参数主要包括以下4个: data,pandas.dataframe对象,后面的x、y和hue均为源于data中的某一列值 x,绘图的x轴变量...中的折线图,会将同一x轴下的多个y轴的统计量(默认为均值)作为折线图中的点的位置,并辅以阴影表达其置信区间。...这里以seaborn中的小费数据集进行绘制,得到如下回归图表: 5. 矩阵图 矩阵图主要用于表达一组数值型数据的大小关系,在探索数据相关性时也较为实用。...绘图接口有stripplot和swarmplot两种,常用参数是一致的,主要包括: x,散点图的x轴数据,一般为分类型数据 y,散点图的y轴数据,一般为数值型数据 hue,区分维度,相当于增加了第三个参数

    2.8K20

    利用Python的Plotly库创建交互式数据可视化

    ='Y轴')​# 显示图形fig.show()上述代码将创建一个简单的散点图,其中包含五个点,每个点的x坐标为1到5,y坐标分别为2、3、5、7和11。...=go.Scatter(x=x, y=y, mode='markers'))​# 设置图形布局fig.update_layout(title='可缩放和可拖动的散点图', xaxis_title='X轴...constrain='domain'参数限制了x轴的缩放范围,而scaleanchor="x"参数将y轴的缩放锚定在x轴上,使得在缩放时x轴和y轴的比例保持不变。...,其中的值矩阵z为一个3x3的矩阵,表示热力图的各个区域的值。...添加交互式功能,如悬停提示、缩放、拖动和点击,以提升图形的交互性和可视化效果。Plotly库提供了丰富的功能和灵活的接口,使得用户能够轻松创建各种类型的交互式图形,并探索数据的不同方面。

    94730

    可视化技能之Matplotlib(上)|可视化系列01

    Axes包含了一套坐标轴(axis),确定了x/y坐标轴之后,数值再确定对应坐标,也就唯一确定了所在位置(这是二维情况下,更高维度就会对应着更多的axis),散点图是去确定点在轴域下的位置,柱状图是确定每个柱柱所在的位置...通过ax.scatter(x,y)绘制以x为横坐标,y为纵坐标的散点图,scatter的重要参数如下: •x,y:对应着x轴和y轴的数据,散点画在坐标轴里的[xi,yi]处。...plot()的常用参数如下: •x,y: x轴和y轴的数据,当plot()只有一个输入列表或数组时,参数被当做y轴,也就是value,x轴以索引自动生成,也就是ax.plot(y)相当于ax.plot(...(ipath); ax.axis('off'); ax.imshow(img); 给散点图加标签并加分隔线来绘制矩阵图,以实践一下以上方法: import matplotlib.lines...总结下本文从Matplotlib的可视化基础框架一步步画散点、折线、柱状、箱线等图,通过理解参数拓展画了瀑布图、矩阵图、棒棒糖图等,并且微调坐标轴文本、标题等图形元素,让可视化更完备,通过双y轴绘制帕累托图等组合图

    1.7K41

    python数据科学系列:seaborn入门详细教程

    它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。显然,绘制结果中的上三角和下三角部分的子图是镜像的。 ?...),但实际上接口调用方式和传参模式都是一致的,其核心参数主要包括以下4个: data,pandas.dataframe对象,后面的x、y和hue均为源于data中的某一列值 x,绘图的x轴变量 y,绘图的...lineplot lineplot不同于matplotlib中的折线图,会将同一x轴下的多个y轴的统计量(默认为均值)作为折线图中的点的位置,并辅以阴影表达其置信区间。...这里以seaborn中的小费数据集进行绘制,得到如下回归图表: ? 5. 矩阵图 矩阵图主要用于表达一组数值型数据的大小关系,在探索数据相关性时也较为实用。...绘图接口有stripplot和swarmplot两种,常用参数是一致的,主要包括: x,散点图的x轴数据,一般为分类型数据 y,散点图的y轴数据,一般为数值型数据 hue,区分维度,相当于增加了第三个参数

    14.5K68

    不如用最经典的工具画最酷炫的图

    第一反应可能是柱状图和折线图的组合,柱子表示数量,次坐标轴的折线表示占比,例如下图。 ? 然后我们可以通过操纵坐标轴尺度,添加数据标签、折线节点,隐藏轴标签和网格线,使得图形更加干练直观。 ?...我们可以利用散点图,将散点的横坐标与数量一致,纵坐标与类别标签一致,因此添加一个辅助列作为散点图的 y 值。 ? 在图形上右键-选择数据,添加系列“占比”,系列值选择辅助列。 ?...点击确定后继续在图形上右键-更改图表类型,将“占比”换为散点图,并绘制在次坐标轴。 ?...确定后再次右键-选择数据,这次我们选择编辑系列“占比”,发现变成了 X 和 Y 轴系列值两项,X 选择原始的数量列。 ?...让我们看看这个例子,变形和排版能让你的 EXCEL 图表变得与众不同。首先选择一行数据插入柱状图。 ? 去除多余部件,仅保留纵坐标轴标签,并添加数据标签。 ?

    2.7K20

    掌握 Altair-从基础到高级的声明式数据可视化指南

    加载数据:使用 pandas 加载包含销售数据的 CSV 文件。创建图表:使用 Altair 创建一个柱状图 (mark_bar()),并通过 encode() 方法指定 x 轴和 y 轴的数据字段。...创建图表:使用 Altair 创建一个堆叠面积图 (mark_area()),通过 encode() 方法指定 x 轴(季度)、y 轴(销售额)和颜色(产品类别)的映射关系。...创建散点图:使用 mark_circle() 创建一个散点图,通过 encode() 方法指定 x 轴(利润)、y 轴(销售额)、颜色(产品类别)、大小(销售数量)的映射关系,并添加提示信息。...组合图表:将散点图和趋势线组合在一起,形成最终的可视化效果。总结总结起来,本文深入探讨了利用 Altair 进行声明式数据可视化的方法和实例。...通过本文的学习,读者可以深入了解如何利用 Altair 创建高效、美观且具有交互性的数据可视化,为数据驱动的决策和沟通提供有力支持。

    16820

    8个plotly绘图技巧

    公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文介绍可视化神器plotly绘图的8个常见技巧点:如何添加标题及控制标题的颜色和大小如何自定义x轴和y轴的名称饼图中如何同时百分比和数值如何控制柱状图宽度如何添加注释如何绘制多子图如何添加图例以及控制其大小...多种图表类型: Plotly 支持多种常见的图表类型,适用于不同类型的数据。你可以轻松创建折线图、散点图、柱状图、热力图、桑基图、3D 图等。...美观性: Plotly 图表具有出色的视觉效果和美观性,支持自定义样式和主题,以满足不同的可视化需求。...'color': 'blue' # 标题颜色 } })# 显示图表fig.show()图片plotly绘图如何自定义x轴和y轴的名称In 3:import...# 添加散点图fig.add_trace(go.Scatter(x=x_data, y=y_data, mode="markers"))# 自定义 x 轴和 y 轴的名称fig.update_xaxes

    64500

    《数据可视化基础》第11章:两个或多个连续性变量相关可视化(一)

    例如,我们可能有不同动物的量化测量数据集,如动物的身高、体重、长度和每日能量需求。为了绘制仅仅两个这样的变量的关系,例如身高和体重,我们通常会使用散点图。...在下面的图中,头的长度在y轴上表示,身体质量在x轴上表示,每只鸟都用一个点表示。这就是所谓的“散点图”,通过上图我们可以发现一种趋势,即身体质量越高,头部越长。 ?...因此我们想要在上面数据的可视化的基础上,再观察头骨大小是否和头部长度有关系。在?的可视化当中,我们用X代表身体质量;用Y代表了头部长度;利用颜色来映射性别。...因此作为气泡图的一个替代方法,我们可以对所有变量绘制散点图矩阵。在这个矩阵上。 在下图的下图的散点图矩阵上,我们可以看到三个变量(身体长度,头骨大小以及身体质量)互相为XY变量下绘制出的散点图。...通过这个矩阵我们可以看出不同变量的散点图是什么样子的。 ?

    81420

    R语言关联规则可视化:扩展包arulesViz的介绍

    1、简介 算法步骤这里不做详细介绍,下面是几个重要的变量的定义: Supp(X=>Y) = P(X) Conf(X=>Y) = P(Y|X) Lift(X=>Y) = CONF(X=>Y)/SUPP(Y...) = P(X and Y)/(P(X)P(Y)) (Lift)是避免了一些不平衡数据标签的偏差性, Lift越大,则数据质量较好;Lift越小,则数据越不平衡。...图3 > plot(rules, shading = "order", control = list(main = "Two-key plot")) 图3中,supp为x轴,conf为y轴,颜色的深浅表示...对于下面的图,我们选择了10条具有高lift的规则。...7、平行坐标图(Parallel coordinates plot ) 平行坐标图将多维数据共享,使得每个维度上分别显示在x轴和y轴。每个数据点是由连接的值对于每个维度中的线表示。

    4.8K80

    关于Python可视化Dash工具—plotly中级图表

    # 如果设置,则在主图上方绘制一个水平子图,以可视化x分布。 # marginal_y–地毯、盒子、小提琴或柱状图中的一种。 # 如果设置,则在主图的右侧绘制一个垂直子图,以显示y分布。...# 鸢尾花类型=1的sepal_width,sepal_length散点图,x轴为密度图,y轴为直方图 fig = px.scatter(df, x="sepal_width", y="sepal_length...散点图,x轴为箱线图,y轴为小提琴图 fig = px.scatter(df, x="sepal_width", y="sepal_length", marginal_x...="box", marginal_y="violin") fig.show() df = px.data.iris() # 所有花卉,x轴为箱线图,y轴为小提琴图,颜色以鸢尾花类型分类 fig =..."box", marginal_y="violin") fig.show() # 密度热力图,鸢尾花类型=1的sepal_width,sepal_length散点图,x轴为密度图,y轴为直方图 fig

    97020
    领券