首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何获取现有数据库的ERD图?

要获取现有数据库的ERD图(实体关系图),您可以使用数据库建模工具或查询数据库元数据来生成ERD图。

  1. 使用数据库建模工具:
    • 安装和配置数据库建模工具,例如MySQL Workbench、Oracle SQL Developer Data Modeler、Microsoft Visio等。
    • 连接到您的数据库。
    • 使用工具中的功能来自动生成ERD图。通常,您可以选择要包含在ERD图中的表和关系,并指定布局和样式选项。
  2. 查询数据库元数据:
    • 使用数据库管理工具(如MySQL命令行、Oracle SQL Developer、Microsoft SQL Server Management Studio等)连接到您的数据库。
    • 使用SQL查询来检索数据库的元数据。元数据包括表、列、主键、外键和索引等信息。
    • 根据查询结果手动创建ERD图。您可以使用绘图工具(如Microsoft Visio、Lucidchart等)或在线ERD工具来绘制图表。

无论您选择使用哪种方法,都需要了解数据库的结构和关系,以便正确地绘制ERD图。此外,确保您具有适当的权限和访问数据库的凭据。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 通过沉浸式虚拟现实观察动作增强运动想象训练

    1、研究背景 增强运动想象的一种方法是动作观察,也就是观察与运动想象任务相关的身体部位的运动。先前的研究表明,镜像神经元通过模仿来进行动作的理解和学习,从而引起相应区域的激活。因此,当一个人观察到另一个实体反映想象的身体运动时,动作观察起到了诱导镜像神经元的刺激作用。 2D和3D运动的事件相关去同步化(ERD)模式有显著差异,3D可视化组的ERD增强。更丰富的可视化和对观察到的运动的更强的所有权可诱导更好的ERD发生。 近期,发表在《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING》杂志上的一篇研究论文通过对握手动作的动作观察,探讨虚拟现实(VR)的丰富沉浸感是否会影响重复的运动想象训练。为了研究显示介质的不同是否会影响进行运动想象时的动作观察,研究者通过两种不同的显示器显示了相同的图形握手动作:沉浸式VR耳机和显示器。此外,该研究以图形情景为刺激,更加强调沉浸式VR中的错觉和具体化对运动想象训练中动作观察的影响。为了检查使用这两种不同介质时的大脑活动,研究者使用了EEG,并识别了感觉运动皮层诱发的神经信号的变化。为了测量不同运动想象任务中空间脑活动模式的可区分性,研究者应用了脑机接口中常用的机器学习技术来学习和区分不同类型的运动想象中的脑活动。

    00

    老年人θ-γ跨频率耦合与工作记忆表现之间的纵向关系

    摘要:θ-γ耦合(TGC)是支撑工作记忆的一种神经生理机制,与N-back任务(一种工作记忆任务)的表现相关。与TCG类似,θ和α能量的事件相关同步(ERS)与事件相关去同步(ERD)也和工作记忆有关。但目前为止,还鲜少有研究探讨工作记忆任务表现与TCG,ERS和ERD之间的关系。本研究旨在探讨在六到十二周时间范围内,不同临床症状的老年人工作记忆表现的变化是否与TCG,ERS或ERD的变化相关。两组共62名60岁以上的被试参与了研究,一组是无精神疾病控制组;一组是缓解期的重度抑郁症(MDD)老年人。在N-back任务(3-back条件)期间,用EEG评估被试的TGC,ERS以及ERD指标。结果显示,随着时间推移,在控制组中的TGC、α频段的ERD和ERS以及θ频段的ERS改变与3-back任务表现的改变相关;然而在MDD组中,3-back任务表现的变化只与TCG的改变相关。这表明,随着时间的推移,在不同临床状况人群下的工作记忆表现与TGC之间的关系是稳固的,但对于θ和α频段的ERS和ERD来说,它们与工作记忆之间的关系则没那么稳固。

    04

    老年人Theta-Gamma跨频率耦合与工作记忆表现的纵向关系研究

    Theta-gamma耦合(TGC)是支持工作记忆(WM)的一种神经生理机制。TGC与N-back表现(一种WM任务)相关。与TGC相似,theta和alpha事件相关同步化(ERS)和去同步化(ERD)也和WM相关。很少有研究探讨WM表现和TGC、ERS或ERD之间的纵向关系。本研究旨在确定WM表现的变化是否与6到12周内TGC(主要目的),以及theta和alpha的ERS或ERD的变化有关。包括62名60岁及以上的被试,无精神疾病或缓解型重度抑郁障碍(MDD)且无认知障碍。在N-back任务(3-back)期间使用脑电(EEG)评估TGC、ERS和ERD。在控制组中,3-back表现的变化和TGC、alpha ERD和ERS、以及theta ERS的变化之间存在相关。相比之下,在缓解型MDD亚组中,3-back表现的变化只和TGC的变化之间存在显著相关性。我们的结果表明,WM表现和TGC之间的关系随着时间的推移是稳定的,而theta和alpha ERD和ERS的变化则不是这样。

    02

    在神经反馈任务中同时进行EEG-fMRI,多模态数据集成的大脑成像数据集

    虽然将EEG和fMRI结合使用可实现精细的空间分辨率和准确的时间分辨率集成,但仍带来许多挑战,比如要实时执行以实现神经反馈(Neurofeedback, NF)循环时。在这项研究里,研究人员描述了在运动想象NF任务期间同时获取的EEG和fMRI的多模态数据集,并补充了MRI结构数据。同时研究人员说明可以从该数据集中提取的信息类型,并说明其潜在用途。这是第一个脑电图和fMRI同步记录的NF,展示了第一个开放存取双模态NF数据集脑电图和fMRI。研究人员表示,(1)改进和测试多模态数据集成方法的宝贵工具,(2)改善提供的NF的质量,(3)改善在MRI下获得的脑电图去噪的方法,(4) 研究使用多模态信息的运动图像的神经标记。

    02

    Nature子刊 | 一种用于急性脑卒中患者的脑电图运动成像数据集

    脑机接口(BCI)是一项涉及与大脑部分直接通信的技术,近年来发展迅速;它已经开始用于临床实践,如患者康复。患者脑电图(EEG)数据集对于BCI的算法优化和临床应用至关重要,但目前还很少见。我们收集了50例急性中风患者使用无线便携式生理盐水脑电图设备在执行两项任务时的数据:1)想象右手运动和2)想象左手运动。该数据集包括四种类型的数据:1)运动想象指令,2)原始记录数据,3)去除伪影和其他操作后的预处理数据,以及4)患者特征。这是第一个处理急性中风患者左手和右手运动图像的开放数据集。我们认为,该数据集将非常有助于分析脑激活和设计更适用于急性脑卒中患者的解码方法,这将极大地促进运动想象领域-BCI领域的研究。

    01

    维度模型数据仓库(三) —— 准备数据仓库模拟环境

    (二)准备数据仓库模拟环境         上一篇说了很多数据仓库和维度模型的理论,从本篇开始落地实操,用一个小而完整的示例说明维度模型及其相关的ETL技术。示例数据库和ETL的SQL实现是在《Dimensional Data Warehousing with MySQL: A Tutorial》基础上做了些修改,增加了Kettle实现的部分。本篇详细说明数据仓库模拟实验环境搭建过程。         操作系统:Linux 2.6.32-358.el6.x86_64         数据库:MySQL 5.6.14 for Linux 64位         Kettle:GA Release 5.1.0         实验环境搭建过程:         1. 设计ERD         2. 建立源数据数据库和数据仓库数据库         3. 建立源库表         4. 建立数据仓库表         5. 建立过渡表         6. 生成源库测试数据         7. 生成日期维度数据         源数据数据库初始ERD如图(二)- 1所示         数据仓库数据库初始ERD如图(二)- 2所示         执行清单(二)- 1里的SQL脚本完成2-7步的任务

    02

    数据库建模工具有哪些(uml类图工具)

    Sybase PowerDesigner – 一个高端数据建模工具。你可以下载一个45天试用版。ERWin – 一个高端数据建模工具。可下载试用版。Rational Rose Enterprise – 一个高端UML工具,恰如其分的数据库建模支持。可下载试用版。Visio Professional – 一个价格低廉的绘图工具,可用来生成数据模型、UML图等。企业版还支持针对各种数据库的双向工程能力。你可以订购60天试用版的CD。Dezign – 一个价格极其低廉的ERD建模工具。你可以下载一个有限制的试用版本。ERD Tool List – 一个关于各种数据库和UML建模工具的链接和资源的清单。 附: PowerDesigner12.0下载地址: http://download.sybase.com/eval/PowerDesigner/powerdesigner12_eval.exe

    03

    NeuroImage Clinical:EEG神经反馈对ADHD患者的α波振荡、注意力和抑制控制的影响

    注意缺陷多动障碍(Attention-deficit hyperactivity disorder, ADHD)的核心症状是注意力不集中、冲动和多动。全世界约有2-7%的儿童受到ADHD的影响,部分会持续到成年期,成年人患病率为4 - 5%,且ADHD与不良的长期结果相关,如社会适应障碍、学业问题以及与其他精神疾病共病等。 研究发现ADHD儿童EEG普遍偏慢,其特征是低频节律波(如θ波4-7 Hz)功率增加和高频的节律波的功率(如β 14–25 Hz )。在健康发育过程中θ/β比值(TBR)逐渐下降,而ADHD患者的θ/β上升被认为反映了发育迟缓或皮质觉醒不足。然而,最近的研究对θ/β与觉醒的关系及其作为ADHD诊断的可靠依据提出了挑战。除了θ/β外,静息态α波(8-12 Hz)的功率也成为了成人ADHD患者研究的重要课题。研究发现,休息状态ADHD患者前部脑区α波更高且伴随警戒水平更低。而在健康被试中,α波振幅的升高与对刺激感知减弱、走神及注意力缺失有关,另外运动皮层α波振幅的增加与主动的运动抑制有关。然而近期一些研究发现,与健康对照组相比,ADHD成人的α波功率有所提高,而另一些研究则发现ADHD成人α波水平的降低或者没有显著差异。因此,研究中关于α波功率相互矛盾的结果被视为多种支持ADHD电生理表型可能性的证据。 面对这种矛盾的结果,使用神经反馈(neurofeedback,NFB)来控制特定脑区的振荡成了解决这一问题的一个较好的选择。神经反馈导致的可塑性已经在运动和纹状体回路中得到了证实,这与ADHD的病理机制有关。研究表明,神经反馈也许能用于改善ADHD患者的注意力不集中和冲动症状,对成年人的长期影响至少为6个月,且效应接近于哌醋甲酯(又名利他林,是一种治疗ADHD的常用一线药物)。特别是,在注意过程中被调节的α波节律波(8-12Hz)被认为是ADHD潜在的生物标记。在各类研究中,成人ADHD异常的脑电振荡活动模式被反复提及。近期,来自瑞士日内瓦大学的研究团队使用脑电神经反馈的方法让成年ADHD被试自我调节α波的节律,以探索α波振荡对注意力表现和大脑可塑性的调节作用。他们研究团队在NeuroImage Clinical上发表了题为《Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback》的研究论文(Deiber et al., 2020)。本文对该研究进行详细解读。

    00

    斯坦福AI实验室又一力作:深度学习还能进一步扩展 | CVPR2016最佳学生论文详解

    结构递归神经网络: 时空领域图像中的深度学习 联合编译:陈圳、章敏、李尊 摘要 虽然相当适合用来进行序列建模,但深度递归神经网络体系结构缺乏直观的高阶时空架构。计算机视觉领域的许多问题都固有存在高阶架构,所以我们思考从这方面进行提高。在解决现实世界中的高阶直觉计算方面,时空领域图像是一个相当流行的工具。在本文中,我们提出了一种结合高阶时空图像和递归神经网络的方法。我们开发了一种可随意扩展时空图像的办法,这是一种正反馈、差异化高、可同步训练的RNN混合网络。这种方法是通用的,通过一系列设定好的步骤可以将任意时

    06
    领券