余弦相似度介绍 余弦相似度是利用两个向量之间的夹角的余弦值来衡量两个向量之间的相似度,这个值的范围在-1到1之间。...两个向量的夹角示例图如下: 余弦相似度的计算公式 向量的余弦相似度计算公式 余弦相似度计算的示例代码 用Python实现余弦相似度计算时,我们可以使用NumPy库来计算余弦相似度,示例代码如下: import...(norm_x) 余弦相似度的应用 余弦相似度在相似度计算中被广泛应用在文本相似度、推荐系统、图像处理等领域。...如在文本相似度计算中,可以使用余弦相似度来比较两个文档的向量表示,从而判断它们的相似程度。 又如在推荐系统中,可以利用余弦相似度来计算用户对不同商品的喜好程度,进而进行商品推荐。...如果两篇文章的余弦相似度接近1,那么它们在内容上是相似的; 如果余弦相似度接近0,则它们在内容上是不相似的。 这样的相似度计算方法可以在信息检索、自然语言处理等领域得到广泛应用。
计算文本相似度有什么用?...冗余过滤 我们每天接触过量的信息,信息之间存在大量的重复,相似度可以帮我们删除这些重复内容,比如,大量相似新闻的过滤筛选。 这里有一个在线计算程序,你们可以感受一下 ?...余弦相似度的思想 余弦相似度,就是用空间中两个向量的夹角,来判断这两个向量的相似程度: ?...相似度,个么侬就好好弄一个相似程度好伐?比如99%相似、10%相似,更关键的是,夹角这个东西—— 我不会算! 谁来跟我说说两个空间向量的角度怎么计算?哪本书有?...所以,用余弦夹角来计算两个文本的距离的步骤就是: 首先,将两个文本数字化,变成两个向量; 其次,计算两个向量的夹角余弦cos(θ) 结束。
一、余弦相似度的原理 在利用sql实现余弦相似度匹配之前,先讲一讲实现余弦相似度的原理,相信搞清楚原理之后,你可以用多种方法计算出两个向量之间的余弦相似度。...1.基本原理 余弦相似度是通过计算两个向量的夹角余弦值来评估它们的相似度,也可以说是根据两个空间向量的夹角来评估两个个体的差异度。...由下图可以看出,夹角越接近0°,余弦值越接近于1,这时它们之间的相似性越高,反之,夹角越接近180°,余弦值越接近于-1,这时它们之间的余弦相似度越低,当然等于-1不完全等同于他们之间没有相似度,这个得视情况而定...余弦相似度也可以用余弦距离表示,余弦距离通常定义为 ,也就是用 1 减去它们的余弦相似度来得到一个表示距离的数值,该数值范围在[0,2]之间,值越小表示两个向量越 “接近”,相似度越高。...二、利用SQL计算相似度 通过上面的学习你应该已经搞清楚了余弦相似度的基本原理,接下来我们就开始利用sql来进行余弦相似度的计算。
余弦相似度公式: ? 这里的分别代表向量A和B的各分量。 原理:多维空间两点与所设定的点形成夹角的余弦值。...范围:[-1,1],值越大,说明夹角越大,两点相距就越远,相似度就越小。 余弦相似度模型:根据用户评分数据表,生成物品的相似矩阵; 欧氏距离相似度公式: ?...原理:利用欧式距离d定义的相似度s,s=1 /(1+d)。 范围:[0,1],值越大,说明d越小,也就是距离越近,则相似度越大。...欧式相似度模型:根据用户评分数据表,生成物品的相似矩阵; 总结: 余弦相似度衡量的是维度间取值方向的一致性,注重维度之间的差异,不注重数值上的差异,而欧氏度量的正是数值上的差异性。...主要看数值的差异,比如个人兴趣,可能数值对他影响不大,这种情况应该采用余弦相似度 ,而物品的相似度,例如价格差异数值差别影响就比较大,这种情况应该采用欧氏度量
最近在做以图搜图的功能,在评价两个图像相似性时候,尝试了这两种指标,两者有相同的地方,就是在机器学习中都可以用来计算相似度,但是两者的含义有很大差别,以我的理解就是: 前者是看成坐标系中两个点...数据项A和B在坐标图中当做点时,两者相似度为距离dist(A,B),可通过欧氏距离(也叫欧几里得距离)公式计算: ? 当做向量时,两者相似度为cosθ,可通过余弦公式计算: ?...因为有了linalg.norm(),欧氏距离公式实现起来更为方便: dist = linalg.norm(A - B) sim = 1.0 / (1.0 + dist) #归一化 关于归一化: 因为余弦值的范围是...[-1,+1] ,相似度计算时一般需要把值归一化到 [0,1],一般通过如下方式: sim = 0.5 + 0.5 * cosθ 若在欧氏距离公式中,取值范围会很大,一般通过如下方式归一化: sim...,余弦相似度为最大值,即两者有很高的变化趋势相似度 但是从商品价格本身的角度来说,两者相差了好几百块的差距,欧氏距离较大,即两者有较低的价格相似度 总结 对欧式距离进行l2归一化等同于余弦距离!
一、概述 三角函数,相信大家在初高中都已经学过,而这里所说的余弦相似度(Cosine Distance)的计算公式和高中学到过的公式差不多。...二、计算公式 ① 二维平面上的余弦相似度 假设 二维平面 内有两向量: A(x_{1},y_{1}) 与 B(x_{2},y_{2}) 则二维平面的 A 、 B 两向量的余弦相似度公式为: cos...\ &=\frac{x_{1}x_{2}+y_{1}y_{2}}{\sqrt{x_{1}^2+y_{1}^2}\sqrt{x_{2}^2+y_{2}^2}} \end{aligned} ② n维空间上的余弦相似度...,x_{2n}) ,则有余弦相似度为: \begin{aligned} cos(\theta)&=\frac{a\cdot b}{|a| |b|}\\ &=\frac{\sum_{k=1}^n x_{1k...} x_{2k}}{\sqrt{\sum_{k=1}^nx_{1k}^2}\sqrt{\sum_{k=1}^nx_{2k}^2}} \end{aligned} ③ 注意 余弦相似度的取值范围为 [-1,1
/media/problem/cosine-similarity.png 给你两个相同大小的向量 A B,求出他们的余弦相似度 返回2.0000 如果余弦相似不合法 (比如 A = [0] B
向量空间模型提供了一种对文档进行多词查询对方法,返回值就是一个数字,它表示相关度。...“Python语言”,系统会如何处理呢?...Python的高级应用 3. 各种编程语言的比较 我们可以对每一个文档创建相似的向量,向量中包含“Python”和“语言”两个维度。...,也就是说文档1最接近我们的查询。...另外,根据中学知识我们知道,夹角越小,余弦值越大。因此,我们可以用余弦值来表示相似度。 ? 上面是2维向量的相似度,用同样的方式,可以算出多维向量的相似度,也就是可以计算多个词与文档的相关性。
两个向量有相同的指向时,余弦相似度的值为1;两个向量夹角为90°时,余弦相似度的值为0;两个向量指向完全相反的方向时,余弦相似度的值为-1。这 结果是与向量的长度无关的,仅与向量的指向方向相关。...余弦相似度通常用于正空间,因此给出的值为0到1之间。 注意这上下界对任何维度的向量空间中都适用,而且余弦相似性最常用于高维正空间。...例如在信息检索中,每个词项被赋予不同的维度,而一个文档由一个向量表示,其各个维度上的值对应于该词项在文档中出现的频率。余弦相似度因此可以给出两篇文档在其主题方面的相似度。...,可以使用相对词频); 生成两篇文章各自的词频向量; 计算两个向量的余弦相似度,值越大就表示越相似。...“余弦相似度”是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。
协同过滤 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的...余弦相似度 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 ? ?...NaN 4.0 NaN 4.0 NaN 5.0 NaN C 2.0 NaN 2.0 NaN 1.0 NaN NaN D NaN 5.0 NaN 3.0 NaN 5.0 4.0 目标: 我们要寻找 A 最相似的其他顾客...fillna(0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.18353259]]) array([[0.88527041]]) 从上面看出A和C的比较相似...0).values.reshape(1, -1)) sim_AB sim_AC OUT: array([[0.30772873]]) array([[-0.24618298]]) 去中心化后 A和C的相似度是负的
上一期,我们介绍了文本相似度的概念,通过计算两段文本的相似度,我们可以: 对垃圾文本(比如小广告)进行批量屏蔽; 对大量重复信息(比如新闻)进行删减; 对感兴趣的相似文章进行推荐,等等。...那么如何计算两段文本之间的相似程度?...上一篇我们简单介绍了夹角余弦这个算法,其思想是: 将两段文本变成两个可爱的小向量; 计算这两个向量的夹角余弦cos(θ): 夹角余弦为1,也即夹角为0°,两个小向量无缝合体,则相似度100% 夹角余弦为...回顾点击这里:文本分析 | 余弦相似度思想 本文会具体介绍如何计算文本的夹角余弦相似度,包括两部分: 向量的夹角余弦如何计算 如何构造文本向量:词频与词频向量 1. 向量的夹角余弦如何计算 ?...*3+1+1+2*2+2*2=19 两个向量模长乘积=sqrt(9+1+1+4+4+1)*sqrt(9+1+1+4+4+1)=20 两个向量夹角余弦相似度=19/20=95% 所以这两段文本的相似度为95%
于是我决定把它用到项目中,来判断两个文本的相似度。...想到Lucene中的评分机制,也是算一个相似度的问题,不过它采用的是计算向量间的夹角(余弦公式),在google黑板报中的:数学之美(余弦定理和新闻分类) 也有说明,可以通过余弦定理来判断相似度;于是决定自己动手试试..., 最后我们的相似度可以这么计算: ? ...最后写了个测试,根据两种不同的算法对比下时间,下面是测试结果: 余弦定理算法:doc1 与 doc2 相似度为:0.9954971, 耗时:22mm 距离编辑算法:doc1...与 doc2 相似度为:0.99425095, 耗时:322mm 可见效率有明显提高,算法复杂度大致为:document1.length + document2.length。
在知识图谱构建阶段的实体对齐和属性值决策、判断一篇文章是否是你喜欢的文章、比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识...最后TF-IDF计算权重越大表示该词条对这个文本的重要性越大。 第三步,余弦相似度计算 这样,就需要一群你喜欢的文章,才可以计算IDF值。...当你给出一篇文章E时,采用相同的方法计算出E=(q1, q2, …, qn),然后计算D和E的相似度。 计算两篇文章间的相似度就通过两个向量的余弦夹角cos来描述。...使用余弦这个公式,我们就可以得到,句子A与句子B的夹角的余弦。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫”余弦相似性”。...(为了避免文章长度的差异,可以使用相对词频); (3)生成两篇文章各自的词频向量; (4)计算两个向量的余弦相似度,值越大就表示越相似。
余弦相似性是一种用于计算两个向量之间相似度的方法,常被用于文本分类和信息检索领域。...具体来说,假设有两个向量A和B,它们的余弦相似度可以通过以下公式计算: 其中,dot_product(A, B)表示向量A和B的点积,norm(A)和norm(B)分别表示向量A和B的范数。...如果A和B越相似,它们的余弦相似度就越接近1,反之亦然。 数据集 我们这里用的演示数据集来自一个datacamp: 这个数据集来自一家伊朗电信公司,每一行代表一个客户一年的时间。...余弦相似度算法 这段代码使用训练数据集来计算类之间的余弦相似度。...总结 余弦相似性本身并不能直接解决类别不平衡的问题,因为它只是一种计算相似度的方法,而不是一个分类器。但是,余弦相似性可以作为特征表示方法,来提高类别不平衡数据集的分类性能。
在机器学习和数据科学领域,余弦相似度长期以来一直是衡量高维对象之间语义相似度的首选指标。余弦相似度已广泛应用于从推荐系统到自然语言处理的各种应用中。...论文地址:https://arxiv.org/pdf/2403.05440v1 余弦相似度通过测量两个向量的夹角的余弦值来度量它们之间的相似性,机器学习研究常常通过将余弦相似性应用于学得的低维特征嵌入来量化高维对象之间的语义相似性...点积:在某些应用中,嵌入向量之间的非归一化点积被发现优于余弦相似度,特别是在密集段落检索和问答任务中。 软余弦相似度:这种方法除了考虑向量表示外,还考虑了单个词之间的相似度,可能提供更细致的比较。...归一化嵌入与余弦相似度:在使用余弦相似度之前,应用层归一化等归一化技术能有效提升相似度计算的准确性。 在选择替代方案时,必须考虑任务的具体要求、数据的性质以及所使用的模型架构。...© THE END 转载请联系本公众号获得授权
深度学习自然语言处理 分享 整理:pp 摘要:余弦相似度是两个向量之间角度的余弦值,或者说是两个向量归一化之间的点积。...一种流行的应用是通过将余弦相似度应用于学习到的低维特征嵌入来量化高维对象之间的语义相似性。在实践中,这可能比嵌入向量之间的非归一化点积效果更好,但有时也会更糟。...正则化对余弦相似性的影响:论文探讨了在训练过程中使用的不同类型的正则化如何影响余弦相似性的结果,以及这些影响在深度学习模型中可能更加复杂和不透明。...word2vec [5]: word2vec是一种著名的词嵌入方法,它使用负采样或逆概率校准(IPS)来处理不同词的流行度(频率),这可能影响余弦相似性的结果。...用户和物品的动态特性:在推荐系统中,用户的兴趣和物品的流行度可能会随时间变化。研究这些动态特性如何影响余弦相似性度量,以及如何设计模型来适应这些变化,是一个值得探索的问题。
,原因是作者使用了一个cosine similarity(余弦相似度)的概念。...cosine similarity(余弦相似度)如何计算 简单搜索了一下它的介绍: 余弦值的范围在[-1,1]之间,值越趋近于1,代表两个向量的方向越接近;越趋近于-1,他们的方向越相反;接近于0,表示两个向量近乎于正交...最常见的应用就是计算文本相似度。将两个文本根据他们词,建立两个向量,计算这两个向量的余弦值,就可以知道两个文本在统计学方法中他们的相似度情况。实践证明,这是一个非常有效的方法。...前面我们搜索了解到,cosine similarity(余弦相似度)最常见的应用就是计算文本相似度,那么,为什么生物信息学领域里面的cosmic的signature的相似性要采用cosine similarity...(余弦相似度)而不是常见的简单的相关性系数呢?
循环神经网络(三) ——词嵌入学习与余弦相似度 (原创内容,转载请注明来源,谢谢) 一、词汇表征 1、one-hot表示法 之前的学习中提到过,对于词汇库,可以用one-hot表示法来表示。...但是词嵌入模型的词语通常是有限种类的,未知的词语会标记成,而图像则需要处理各种的输入。 三、词嵌入特性与余弦相似度 1、相似处理过程 词嵌入有个特性,称为类比推理。...需要说明的是,通常相似度并不会精准的100%,因为经过压缩后,会有一定的误差。 ? 2、相似度函数 最常用的相似度函数,即余弦相似度,如下图所示。...其中分子表示两个向量的内积,分母表示向量元素的平方和的乘积。 ? 因为这和计算余弦是一致的,故称为余弦相似度。 ?...除此之外,还有欧拉距离(||u-v||2)等计算相似度的方式,但是余弦相似度最常用。
例如精准营销中的人群扩量涉及用户相似度的计算;图像分类问题涉及图像相似度的计算,搜索引擎涉及查询词和文档的相似度计算。相似度计算中,可能由于《数学之美》的影响,大家最熟悉的应该是余弦相似度。...接下来我们就可以做一些有意思的事情了。比如前面提到的三个业务场景,我们可以看看如何用余弦相似度来解决。当然实际问题肯定远远要复杂得多,但是核心的思想都是类似的。...案例1:精准营销 假设一次运营计划,比如我们圈定了1w的用户,如何扩展到10万人呢? 利用余弦相似度,我们这里其实最核心的问题就是:如何将用户向量化?...这里选取了开源搜索引擎数据库ES的内核Lucene作为研究对象。研究的问题是:Lucene是如何使用余弦相似度进行文档相似度打分? 当然,对于Lucene的实现,它有另一个名字:向量空间模型。...接下来通过三个业务场景的例子,介绍余弦公式的应用,即数学模型如何落地到业务场景中。这三个简单的例子代码不过百行,能够帮助读者更好地理解余弦相似度。 最后介绍了一个工业级的样例。
本文将介绍几种常用的用来计算两个向量在嵌入空间中的接近程度的相似性度量。 余弦相似度 余弦相似度(cos (θ))值范围从-1(不相似)到+1(非常相似)。...当计算余弦相似度时,得到0.948的值也可以确认两个向量非常相似。当较点A(1.5, 1.5)和点C(-1.0, -0.5)的相似度时,余弦相似度为-0.948,表明两个向量不相似。...余弦相似度主要考虑两个向量之间的角度来确定它们的相似度,并且忽略向量的长度。 在Python中计算余弦相似度很简单。我们可以将相似值cos(θ)转换为两个向量之间的角度(θ),通过取反余弦。...点积受到向量嵌入长度的影响,这在选择相似性度量时可能是一个关键的考虑因素 点积是如何影响相似性度量呢? 假设你正在计算一组科学研究论文的相似度。研究论文嵌入向量的长度与被引用次数成正比。...使用余弦相似度来计算研究论文之间的相似度是很常见的。如果使用点积,研究论文之间的相似性是如何变化的? 余弦相似度考虑向量的方向和大小,使其适用于向量的长度与其相似度不直接相关的情况。
领取专属 10元无门槛券
手把手带您无忧上云