平时的编码中,我们经常需要判断两个文本的相似性,不管是用来做文本纠错或者去重等等,那么我们应该以什么维度来判断相似性呢?这些算法又怎么实现呢?这篇文章对常见的计算方式做一个记录。...与 Jaccard 类似,Dice 系数也是一种计算简单集合之间相似度的一种计算方式。...指两个字串之间,由一个转成另一个所需的最少编辑操作次数。 简单的说,就是用编辑距离表示字符串相似度, 编辑距离越小,字符串越相似。...我们使用了** 1 - ( 编辑距离 / 两个字符串的最大长度) ** 来表示相似度,这样可以得到符合我们语义的相似度。...余弦相似度通常用于正空间,因此给出的值为 0 到 1 之间。 计算公式如下: ? 余弦我们都比较熟悉,那么是怎么用它来计算两个字符串之间的相似度呢?
该库是具有 tf * idf 权重的 Ruby 向量空间模型(VSM),它能够用 tf * idf 计算文本之间的相似度。...排名函数创建文档项矩阵: https://en.wikipedia.org/wiki/Okapi_BM25 model = TfIdfSimilarity::BM25Model.new(corpus) 创建一个相似矩阵...: matrix = model.similarity_matrix 查找矩阵中两个文档的相似度: matrix[model.document_index(document1), model.document_index...(document2)] 打印文档中术语的 tf * idf 值: tfidf_by_term = {} document1.terms.each do |term| tfidf_by_term[term...- ['and', 'the', 'to'] document1 = TfIdfSimilarity::Document.new(text, :tokens => tokens) 自己提供每个术语出现的次数和文档中的
主要方法有:编辑距离、余弦相似度、模糊相似度百分比 1 编辑距离 编辑距离(Levenshtein距离)详解(附python实现) 使用Python计算文本相似性之编辑距离 def levenshtein...(first, second): ''' 编辑距离算法(LevD) Args: 两个字符串 returns: 两个字符串的编辑距离 int...="hello,good moring" str2="hi,good moring" edit_distance=levenshtein(str1,str2) edit_distance 4 2 余弦相似度...余弦计算相似度度量 python用余弦相似度计算英文文本相似度 https://blog.csdn.net/u013749540/article/details/51813922图片很美...words2_dict[word]) else: vect2.append(0) print(vect1) print(vect2) # 计算余弦相似度
Python编程:如何计算两个不同类型列表的相似度 摘要 在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时。...本文将介绍如何使用Python计算两个不同类型列表的相似度,包括数字类型和字符串类型的情况。我们将深入探讨这些方法,并提供代码示例,帮助您更好地理解并应用这些技巧。...引言 在实际项目中,我们常常需要比较两个不同类型列表的相似度。例如,当我们需要分析用户行为或者比较文本数据时,就需要用到这样的技巧。...小结 本文介绍了如何计算两个不同类型列表的相似度,包括数字类型和字符串类型的情况。我们涵盖了各种相似度计算方法,并提供了相应的Python代码示例。...表格总结 类型 相似度算法 数字类型 欧几里得距离、曼哈顿距离 字符串类型 Levenshtein距离、Jaccard相似度 总结与未来展望 通过本文的学习,读者可以掌握如何计算两个不同类型列表的相似度
编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫 Levenshtein Distance。...一个字符串可以通过增加一个字符,删除一个字符,替换一个字符得到另外一个字符串,假设,我们把从字符串A转换成字符串B,前面3种操 作所执行的最少次数称为AB相似度 如 abc adc 度为 1 ababababa...namespace Levenshtein { /// /// 分析完成事件委托 /// /// 相似度... public delegate void AnalyzerCompletedHander(double sim); /// /// 文章相似度工具 ///...> Completed(o.Result)); } /// /// 同步开始任务 /// /// 相似度
在文本处理和字符串比较的任务中,有时我们需要查找两个字符串之间的差异位置,即找到它们在哪些位置上不同或不匹配。这种差异位置的查找在文本比较、版本控制、数据分析等场景中非常有用。...示例代码下面是一个示例代码,展示了如何使用 difflib 模块查找两个字符串之间的差异位置:from difflib import SequenceMatcherdef find_difference_positions...如果需要比较大型字符串或大量比较操作,请考虑使用其他更高效的算法或库。自定义差异位置查找算法除了使用 difflib 模块,我们还可以编写自己的算法来查找两个字符串之间的差异位置。...结论本文详细介绍了如何在 Python 中查找两个字符串之间的差异位置。我们介绍了使用 difflib 模块的 SequenceMatcher 类和自定义算法两种方法。...通过了解和掌握这些方法,你可以更好地处理字符串比较和差异分析的任务。无论是在文本处理、版本控制还是数据分析等领域,查找两个字符串之间的差异位置都是一项重要的任务。
在更深入地研究不同的距离测量之前,我们先要有一个关于它们如何工作以及如何选择合适的测量的大致概念。 距离度量用于计算给定问题空间中两个对象之间的差异,即数据集中的特征。...5、余弦相似度和距离 Cosine similarity 余弦相似度是方向的度量,他的大小由两个向量之间的余弦决定,并且忽略了向量的大小。...余弦相似度通常用于与数据大小无关紧要的高维,例如,推荐系统或文本分析。 余弦相似度可以介于-1(相反方向)和1(相同方向)之间,计算方法为: 余弦相似度常用于范围在0到1之间的正空间中。...7、汉明距离 汉明距离衡量两个二进制向量或字符串之间的差异。 对向量按元素进行比较,并对差异的数量进行平均。如果两个向量相同,得到的距离是0之间,如果两个向量完全不同,得到的距离是1。...但是如果两个时间序列的形状相同但在时间上发生了偏移,那么尽管时间序列非常相似,但欧几里得距离会表现出很大的差异。 动态时间规整通过使用多对一或一对多映射来最小化两个时间序列之间的总距离来避免这个问题。
在更深入地研究不同的距离测量之前,我们先要有一个关于它们如何工作以及如何选择合适的测量的大致概念。 距离度量用于计算给定问题空间中两个对象之间的差异,即数据集中的特征。...5、余弦相似度和距离 Cosine similarity 余弦相似度是方向的度量,他的大小由两个向量之间的余弦决定,并且忽略了向量的大小。...余弦相似度通常用于与数据大小无关紧要的高维,例如,推荐系统或文本分析。 余弦相似度可以介于-1(相反方向)和1(相同方向)之间,计算方法为: 余弦相似度常用于范围在0到1之间的正空间中。...7、汉明距离 汉明距离衡量两个二进制向量或字符串之间的差异。 对向量按元素进行比较,并对差异的数量进行平均。如果两个向量相同,得到的距离是0之间,如果两个向量完全不同,得到的距离是1。...但是如果两个时间序列的形状相同但在时间上发生了偏移,那么尽管时间序列非常相似,但欧几里得距离会表现出很大的差异。 动态时间规整通过使用多对一或一对多映射来最小化两个时间序列之间的总距离来避免这个问题。
二、FuzzyWuzzy介绍 FuzzyWuzzy 是一个简单易用的模糊字符串匹配工具包。它依据 Levenshtein Distance 算法,计算两个序列之间的差异。...1、fuzz模块 fuzz模块主要用于计算两个字符串之间的相似度。...函数 作用 描述 fuzz.ratio(s1, s2) 简单匹配 计算两个字符串之间的相似度,返回一个介于0到100之间的数值,数值越高表示相似度越高。...# 它通过寻找两个字符串之间的最长连续公共子串来计算相似度,这个子串必须是s1的连续部分。 # 这种方式特别适用于拼写检查、自动补全、文本摘要中的关键词匹配等场景。...注意事项 process.extract方法依赖于底层的相似度计算函数(如fuzz.ratio、fuzz.partial_ratio等),这些函数定义了如何计算两个字符串之间的相似度。
0x00 概述 在数据挖掘中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距离。...缺点:余弦相似度的一个主要缺点是没有考虑向量的大小,而只考虑它们的方向。以推荐系统为例,余弦相似度就没有考虑到不同用户之间评分尺度的差异。...它通常用于比较两个相同长度的二进制字符串。它还可以用于字符串,通过计算不同字符的数量来比较它们之间的相似程度。 缺点:当两个向量长度不相等时,汉明距离使用起来很麻烦。...当你有一个深度学习模型来预测图像分割时,比如一辆汽车,雅卡尔指数可以用来计算给定真实标签的预测分割的准确度。 类似地,它可以用于文本相似性分析,以测量文档之间有多少词语重叠。...尽管它们的计算方法相似,但是 Sørensen-Dice 系数更直观一些,因为它可以被视为两个集合之间重叠的百分比,这个值在 0 到 1 之间: ?
缺点 余弦相似度的一个主要缺点是没有考虑向量的大小,而只考虑它们的方向。在实践中,这意味着没有充分考虑价值的差异。以一个推荐系统为例,余弦相似度没有考虑到不同用户之间评分尺度的差异。...它通常用于比较两个相同长度的二进制字符串。它还可以用于字符串,通过计算不同字符的数量来比较它们之间的相似程度。 缺点 如您所料,当两个向量的长度不相等时,很难使用汉明距离。...同样,它也可以用于文本相似度分析,以衡量文档之间的选词重叠程度。因此,它可以用来比较模式集。 半正矢距离(haversine) ? Haversine距离是指球面上两个点之间的经度和纬度。...尽管它们的计算方法类似,但Sørensen-Dice索引更直观一些,因为它可以被视为两个集合之间重叠的百分比,这是一个介于0和1之间的值。...您会发现它通常用于图像分割任务或文本相似性分析中。 注意:比这里提到的9种距离测量更多。
以推荐系统为例,那么余弦相似性并没有考虑到不同用户之间的评分等级差异。 用例 当我们有高维数据且向量的大小并不重要时,我们经常使用余弦相似度。...可能是文档的长度不均匀,计数的大小就不那么重要了。那么,我们最好是使用不考虑大小的余弦相似性。 3. 汉明距离 汉明距离是指两个向量之间相差的数值。它通常用于比较两个长度相等的二进制字符串。...它也可以用来比较字符串之间的相似度,计算彼此不同的字符数。 ? 缺点 正如你所预料的,当两个向量的长度不相等时,汉明距离很难使用。你会希望将相同长度的向量相互比较,以了解哪些位置不匹配。...当你有一个深度学习模型预测图像的片段时,例如,一辆汽车,Jaccard指数就可以用来计算给定真实标签的预测片段的准确度。同样,它也可以用于文本相似性分析,以衡量文档之间的选词重叠程度。...虽然它们的计算方法相似,但Sørensen-Dice指数更直观一些,因为它可以被看作是两组之间的重叠百分比,这个数值在0和1之间。
该如何揭示病毒家族中恶意脚本之间的关系呢?接下来,我们就通过手工搭建一个简易的恶意脚本分析系统,来实现对恶意脚本之间关系的研究。...系统功能 系统的功能如下,主要为3个: 使用yara检测脚本对应的病毒家族。 计算脚本与样本库中每个样本的相似度。 提取脚本新增/改动的恶意代码。...系统运行完成后,会生成一个html报告,用于可视化显示脚本之间的具体差异。 ? 显示效果如下,高亮显示脚本与相似样本间具体的新增/更改/删除恶意代码行。 ?...check_similarity函数 调用开源difflib库的SequenceMatcher函数进行文本相似度计算,筛选出相似百分比最高的样本。...PS:若前面yara检测出对应的病毒家族,则只计算该家族目录下的样本相似度,否则,计算所有家族样本的相似度。 ? 样本按照发现日期进行存放,便于整理其中关系。 ?
以一个推荐系统为例,余弦相似度没有考虑到不同用户之间评分尺度的差异。 用例 当我们有高维数据和向量的大小不重要时,我们经常使用余弦相似度。对于文本分析,当数据以单词计数表示时,经常使用此度量。...然后,我们最好使用不考虑大小的余弦相似度 3、Hamming Distance ? 汉明距离是两个向量之间不同值的个数。它通常用于比较两个相同长度的二进制字符串。...它还可以用于字符串,通过计算不同字符的数量来比较它们之间的相似程度。 缺点 如你所料,当两个向量的长度不相等时,很难使用汉明距离。为了了解哪些位置不匹配,您可能希望比较相同长度的向量。...虽然它们的计算方法类似,但Sørensen-Dice索引更直观一些,因为它可以被视为两个集合之间重叠的百分比,这个值在0到1之间: ?...用例 用例与Jaccard index相似(如果不相同的话)。你会发现它通常用于图像分割任务或文本相似度分析。 注意:距离测量比这里提到的9个要多得多。
团队计划通过比较最近提交的写作与学生之前提交的作品来确定写作风格的差异。在其他变量中,该计划着眼于:单词长度,句子结构以及单词的使用方式。例如,“例如”是否写成“ex”或“eg”。...训练数据进行测试 Ghostwriter程序使用所谓的连体神经网络来区分两个文本的书写风格。对网络进行大量数据训练,以便从写作风格的表示中学习,然后进行比较。...当学生提交作业时,网络会将其与之前的作业进行比较。对于每个先前的分配,网络提供用于针对新分配书写样式相似性的百分比分数。 最后,这些分数用加权平均值计算,该计算还考虑了其他因素,例如交付时间。...最终得分以百分比表示,用来表示新作业与学生写作风格之间的相似性。 应用广泛 Ghostwriter的技术基础可以应用到其他领域。...例如,该方案可用于警察工作,对伪造文件分析、法医文件审查员的工作进行补充。 “与警方合作会很有趣,警方目前正在部署法证文件审查员,以寻找他们所比较的文本之间的质量相似性和差异。
:欧氏距离直接反映了两个点之间的几何距离,具有很强的直观性缺点:对尺度敏感:不同维度的数值尺度差异会影响距离的计算结果,需要对数据进行标准化或归一化处理对异常值敏感:欧氏距离对数据中的异常值非常敏感,异常值可能会显著影响计算结果欧氏距离...公式如下:应用场景余弦相似度在许多领域有广泛应用,特别是文本和信息检索领域:文本相似度计算:在自然语言处理 (NLP) 中,余弦相似度用于计算两个文本或文档之间的相似度,通过比较它们的词频向量推荐系统:...(如文本数据中的词频向量),计算结果可能不准确,需要结合其他方法使用余弦相似度(Cosine Similarity)三、汉明距离 (Hamming Distance)定义与公式汉明距离用于衡量两个等长字符串之间的不同字符个数...:在密码分析中,用于比较不同密文之间的差异优缺点分析优点:计算简单:汉明距离的计算过程非常简单,适合大规模数据处理适用于离散数据:汉明距离特别适用于比较离散数据,如字符串和二进制数据缺点:仅适用于等长字符串...,简单易懂余弦相似度:计算两个向量间夹角的余弦值,适合文本和向量数据汉明距离:计算两个等长字符串间不同字符的个数,适合离散数据曼哈顿距离:计算空间中两点在各坐标轴上的距离之和,适合高维数据切比雪夫距离:
之前笔者写过一篇文章关于如何做搜索,但那篇文章的角度是从文本相似度角度写的。那种方式是目前发展的趋势,但是真正的搜索特别是网页搜索不可能在大范围的文本之间两两算相似度的。...这里简单列举一下Learning-to-Rank排序的方法:BM25算法、TF-IDF算相似度、SVD奇异值分解(主题模型)得到向量表示算相似度、再就是之前介绍的文本相似度计算的方法。...主要解决的问题类似,“刘得华演过的电影”与“刘德华演过的电影”表示的是同一个意思。 1. 编辑距离 首先给大家介绍一下编辑距离,编辑距离就是用于衡量两个字符串之间的差异。...LevenshteinDistance(s, len_s - 1, t, len_t - 1) + cost);} 2. fuzzywuzzy Python提供fuzzywuzzy模块,不仅可用于计算两个字符串之间的相似度...说明str1和str2之间相似度是对称的。 ?
因此,距离越小,相似度就会越大。可以认为这是展示三个数据点 A、B 和 C 之间差异的最简单的例子。...p → -∞ : 最小距离(点 D 的对称性)。 ⑥余弦距离 该指标广泛用于文本挖掘、自然语言处理和信息检索系统。例如,它可用于衡量两个给定文档之间的相似性。...为了解决这个问题,你需要计算余弦相似度来判断它们是否相似。 一方面,这可以说明信息检索或搜索引擎是如何工作的。...另一方面,欧几里得距离无法给出短文档和大文档之间的正确距离,因为在这种情况下它会很大。使用余弦相似度公式将计算两个文档在方向而非大小方面的差异。...cos(angle)大于(接近1)表示角度小(26.6°),两个文档A和B彼此接近。 但是,你不能将余弦相似度的值解释为百分比。例如,值 0.894 并不意味着文档 A 是 89.4%,与 B 相似。
领取专属 10元无门槛券
手把手带您无忧上云