首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何计算轮廓opencv中的非零像素

在OpenCV中,要计算轮廓的非零像素数量,您可以使用cv2.findContours()函数来找到轮廓,然后使用cv2.drawContours()函数来绘制轮廓并计算非零像素

  1. 导入必要的库:
代码语言:javascript
复制
import cv2
import numpy as np
  1. 读取图像并进行二值化:
代码语言:javascript
复制
image = cv2.imread('your_image.jpg', cv2.IMREAD_GRAYSCALE)  # 用灰度模式读取图像
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)  # 二值化
  1. 找到轮廓:
代码语言:javascript
复制
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  # 找到轮廓
  1. 计算非零像素数量:

方法一:使用cv2.countNonZero()函数:

代码语言:javascript
复制
non_zero_pixels = cv2.countNonZero(binary_image)
print(f"非零像素数量 (方法一): {non_zero_pixels}")

方法二:使用np.count_nonzero()函数:

代码语言:javascript
复制
non_zero_pixels = np.count_nonzero(binary_image)
print(f"非零像素数量 (方法二): {non_zero_pixels}")

请注意,这两种方法都计算整个二值图像中的非零像素数量。如果您希望计算特定轮廓内的非零像素数量,可以使用cv2.drawContours()函数在原始图像或二值图像上绘制轮廓,然后计算区域内非零像素。

例如:

代码语言:javascript
复制
# 在二值图像上绘制轮廓
contour_image = np.zeros_like(binary_image)
cv2.drawContours(contour_image, contours, -1, color=255, thickness=cv2.FILLED)

# 计算轮廓内非零像素数量
non_zero_pixels_in_contour = cv2.countNonZero(contour_image)
print(f"轮廓内的非零像素数量: {non_zero_pixels_in_contour}")

这样,您就可以计算轮廓内的非零像素数量。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

基于OpenCV修复表格缺失的轮廓--如何识别和修复表格识别中的虚线

如果大家在输入图像使看到的第二行中的单元格线未完全连接。在表识别中,由于单元格不是封闭的框,因此算法将无法识别和考虑第二行。本文提出的解决方案不仅适用于这种情况。它也适用于表格中的其他虚线或孔。...的findContours算法获取所有轮廓的位置。...对于所有轮廓,将绘制一个边界矩形以创建表格的框/单元格。然后将这些框与四个值x,y,宽度,高度一起存储在列表框中。...并计算最小高度,宽度以及x和y。...然后使用OpenCV的bitwise_or操作将水平和垂直两个蒙版合并到一张表中。要检索原始的前后前景,可通过从255中减去cv2.bitwise_or来反转图像。

4.7K10
  • opencv+Recorder︱OpenCV 中的 Canny 边界检测+轮廓、拉普拉斯变换

    本文来自于段力辉 译《OpenCV-Python 中文教程》 边缘检测是图像处理和计算机视觉中的基本问题,通过标识数字图像中亮度变化明显的点,来捕捉图像属性中的显著变化,包括深度上的不连续、表面方向的不连续.... ---- 二、OpenCV 中的 Canny 边界检测 在 OpenCV 中只需要一个函数: cv2.Canny(),就可以完成以上几步。让我们看如何使用这个函数。这个函数的第一个参数是输入图像。.... ---- 三、OpenCV 中的轮廓 1、概念 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。...• 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体。你应该记住,要找的物体应该是白色而背景应该是黑色。...让我们看看如何在一个二值图像中查找轮廓:函数 cv2.findContours() 有三个参数,第一个是输入图像,第二个是轮廓检索模式,第三个是轮廓近似方法。

    3K51

    如何计算文本的非重复计数

    需求:计算快递单号的非重复计数 ? (一) 需求分析 如果要计算非重复计数,我们很容易可以想到一个函数DistinctCount,那如果直接使用是不是就可以了呢?...这里会有几个问题: 空值未进行处理 总计这里多计了1,而且在未有单号的情况下也作为了1显示。 那我们来了解下原因,空值的话如何处理以及为什么总计这里会多了1。...因为DistinctCount在计算非重复计数的时候会把空值也作为一个值来进行计算,所以导致数据上的差异。...>BLANK()) ) (三) 展现需求 最后我们把字段拖入到透视表中 ?...但是和我们要求的数据透视表有些许差异,结果是要求把订单号全部显示出来,而直接拖入字段后把没有快递单号的订单号给隐藏了。这里留个小悬念,可以自己动手实现下这个功能。

    1.7K10

    使用OpenCV和Python计算视频中的总帧数

    一个读者的问题: 我需要用OpenCV计算视频文件中帧的总数。我发现的唯一的方法是对视频文件中的每一帧逐个循环,并增加一个计数器。有更快的方法吗?...计算帧数的简单方法 在OpenCV中计算视频帧数的第一种方法非常快——它只是使用OpenCV提供的内置属性来访问视频文件并读取视频的元信息。...现在让我们来看看这个函数是如何在imutils中实现的: # import the necessary packages from ..convenience import is_cv3 import...提供的API来确定视频文件中的帧数,我们需要利用所谓的捕获属性,其被OpenCV称为CAP_PROP(任何时候你看到一个以CAP_PROP_*开头的常量,你应该知道它与视频处理相关)。...在opencv3中,帧计数属性的名称是cv2.CAP_PROP_FRAME_COUNT,理想情况下,将各自的属性名称传递给视频指针的.get方法将允许我们获得视频中的总帧数(第10-15行)。

    3.8K20

    opencv如何读取仪表中的指针刻度

    向AI转型的程序员都关注了这个号 机器学习AI算法工程   公众号:datayx 最近遇到一个问题,如何读取仪表中的指针指向的刻度  解决方法有多种,比如,方案一:模板匹配+边缘检测+霍夫直线检测,...,它是OpenCV自带的一个算法,可以根据一个模板图到目标图上去寻找对应位置,如果模板找的比较好那么效果显著,这里说一下寻找模板的技巧,模板一定要标准、精准且特征明显。...),同时只保留内切圆部分,效果如下: 接下来就是拟合直线,拟合直线我采用旋转虚拟直线法,假设一条直线从右边0度位置顺时针绕中心旋转当它转到指针指向的位置时重合的最多,此时记录下角度,最后根据角度计算刻度值...》中/英PDF Deep Learning 中文版初版-周志华团队 【全套视频课】最全的目标检测算法系列讲解,通俗易懂!...CNN-RNN-CTC 实现手写汉字识别 yolo3 检测出图像中的不规则汉字 同样是机器学习算法工程师,你的面试为什么过不了?

    1.9K20

    OpenCV如何读取仪表中的指针刻度

    最近遇到一个问题,如何读取仪表中的指针指向的刻度 解决方法有多种,比如,方案一:模板匹配+边缘检测+霍夫直线检测,方案二:神将网络(CNN)目标定位等, 其中CNN就有点麻烦了,需要一定数量的训练样本...,太麻烦,而方案一太普通,最后我采用了方案三, 方案三:模板匹配+k-means+直线拟合 具体做法如下: 首先说一下模板匹配,它是OpenCV自带的一个算法,可以根据一个模板图到目标图上去寻找对应位置...,如果模板找的比较好那么效果显著,这里说一下寻找模板的技巧,模板一定要标准、精准且特征明显。...第一次的模板选取如下: 匹配的效果如下: 根据模板选取的原则我们,必须进行两次匹配才能的到精确和更高准确率的结果 第二次的模板如下: 然后在第一次结果的的基础上也就是蓝色矩形框区域进行第二次匹配,结果如下...,效果如下: 接下来就是拟合直线,拟合直线我采用旋转虚拟直线法,假设一条直线从右边0度位置顺时针绕中心旋转当它转到指针指向的位置时重合的最多,此时记录下角度,最后根据角度计算刻度值。

    10510

    VC++中使用OpenCV进行形状和轮廓检测

    如下面的图像中Shapes.png中有三角形、矩形、正方形、圆形等,我们如何去区分不同的形状,并且根据轮廓进行检测呢?...,结果放到vector> contours数组中 3、遍历每一个轮廓多边形,首选计算轮廓面积,过滤那些面积特别小的轮廓(比如面积小于1000则不处理,例如上图中的那个黑色的圆点...),消除噪声;计算轮廓周长(封闭的或者非封闭的)或曲线长度,以指定精度逼近多边形曲线,计算顶点集合或灰度图像的非零像素的右上边界矩形,获取边界包围盒;然后轮廓多边形的角落(顶点)个数objCor,根据objCor...(contours[i], true); // 计算轮廓周长(封闭的或者非封闭的)或曲线长度 approxPolyDP(contours[i], conPoly[i], 0.02 * peri,.../ 以指定精度逼近多边形曲线 cout << conPoly[i].size() << endl; boundRect[i] = boundingRect(conPoly[i]); // 计算顶点集合或灰度图像的非零像素的右上边界矩形

    51300

    2023-03-31:如何计算字符串中不同的非空回文子序列个数?

    2023-03-31:给定一个字符串 s,返回 s 中不同的非空 回文子序列 个数,通过从 s 中删除 0 个或多个字符来获得子序列。如果一个字符序列与它反转后的字符序列一致,那么它是 回文字符序列。...答案2023-03-31:题目要求计算一个给定字符串中不同的非空回文子序列个数,并对结果取模。我们可以使用动态规划来解决这个问题。...同时需要注意重复计算的空回文子序列数量。...在进行模运算时,直接对所有中间结果进行取模可能会导致整数溢出,因此可以在计算过程中每一步都进行取模操作,也可以使用Rust中提供的取模运算符%=。...时间复杂度:1.预处理左侧和右侧相同字符最后出现位置的时间复杂度为O(n)。2.动态规划的过程中,需要计算长度从2到n的所有可能情况,因此时间复杂度为O(n^2)。

    1.3K00

    2023-03-31:如何计算字符串中不同的非空回文子序列个数?

    2023-03-31:给定一个字符串 s,返回 s 中不同的非空 回文子序列 个数, 通过从 s 中删除 0 个或多个字符来获得子序列。...答案2023-03-31: 题目要求计算一个给定字符串中不同的非空回文子序列个数,并对结果取模。我们可以使用动态规划来解决这个问题。...同时需要注意重复计算的空回文子序列数量。...在进行模运算时,直接对所有中间结果进行取模可能会导致整数溢出,因此可以在计算过程中每一步都进行取模操作,也可以使用Rust中提供的取模运算符%=。...时间复杂度: 1.预处理左侧和右侧相同字符最后出现位置的时间复杂度为O(n)。 2.动态规划的过程中,需要计算长度从2到n的所有可能情况,因此时间复杂度为O(n^2)。

    39020

    OpenCV中如何正确的给文字区域加上底色

    点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 显示效果 对象检测模型推理解析结果之后,经常需要在对象检测框上部添加文字类别跟其他表述文本,这样显示可以让人一目了然...,非常清楚的知道各种检测类别跟自信度信息,但是这个可视化显示,OpenCV可以做的非常好,给人很直观的感觉。...图示如下: 如何生成这种显示 OpenCV中有个获取字体跟文本宽高的函数,调用该函数可以获取 Size cv::getTextSize( const String &...返回的参数类型是cv::Szie文本区域的宽度与长度,有这个就可以根据它完成在文本框上方的文字底色矩形区域绘制,然后在把相关的文本通过putText绘制完成,这样就实现了如下图中显示效果 相关的代码显示如下...OpenCV4.5.4 直接支持YOLOv5 6.1版本模型推理 OpenVINO2021.4+YOLOX目标检测模型部署测试 比YOLOv5还厉害的YOLOX来了,官方支持OpenVINO推理

    2.7K40

    实战解惑 | OpenCV中如何提取不规则ROI区域

    来源:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 什么是ROI ROI是英文Region Of Interest的三个首字母缩写,很多时候我们对图像的分析就是对图像特定ROI的分析与理解,...对细胞与医疗图像来说,ROI提取正确才可以进行后续的分析、测量、计算密度等,而且这些ROI区域往往不是矩形区域,一般都是不规则的多边形区域,很多OpenCV初学者都不知道如何提取这些不规则的ROI区域。...提取ROI区域 在做这个之前,首先来了解一下什么图像处理中的mask(遮罩),OpenCV中是如此定义Mask的:八位单通道的Mat对象,每个像素点值为零或者非零区域。...一个具体的示例如下: ? 可以看出,mask的作用是可以 帮助我们提取各种不规则的区域。OpenCV中完成上述步骤操作只需要简单调用API函数 bitwise_and 即可。...方法二: 这个也是OpenCV新手最迷茫的地方,如何通过程序生成mask,其实真的很简单。看代码演示吧!

    3.6K41

    OpenCV中如何提取不规则ROI区域

    微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 什么是ROI ROI是英文Region Of Interest的三个首字母缩写,很多时候我们对图像的分析就是对图像特定ROI的分析与理解...,对细胞与医疗图像来说,ROI提取正确才可以进行后续的分析、测量、计算密度等,而且这些ROI区域往往不是矩形区域,一般都是不规则的多边形区域,很多OpenCV初学者都不知道如何提取这些不规则的ROI区域...提取ROI区域 在做这个之前,首先来了解一下什么图像处理中的mask(遮罩),OpenCV中是如此定义Mask的:八位单通道的Mat对象,每个像素点值为零或者非零区域。...一个具体的示例如下: ? 可以看出,mask的作用是可以 帮助我们提取各种不规则的区域。OpenCV中完成上述步骤操作只需要简单调用API函数 bitwise_and 即可。...方法二: 这个也是OpenCV新手最迷茫的地方,如何通过程序生成mask,其实真的很简单。看代码演示吧!

    7.1K32

    OpenCV 轮廓 —— 轮廓查找

    本文记录 OpenCV 中的轮廓查找的相关操作。 轮廓查找概述 一个轮廓对应一系列点,这些点以某种方式表示图像中的一条曲线。在不同情况下,这种表示方式也有所不同。有多种方式可以表示一条曲线。...OpenCV 中用一系列二维顶点表示一个轮廓 函数 cv2.findContours() 从二维图像中计算轮廓。...轮廓层次 在了解到底如何提取轮廓之前,有必要花一些时间来理解轮廓到底是什么以及一组轮廓之间如何互相关联。...OpenCV中的连通区域分析算法,输入要求是一张二值(黑白)图像,输出是一张像素标记图,其中属于同一连通区域的非零像素都是同一定值。...之后当你想填充一块由一条或多条轮廓包围的非凸区域时,cv2.drawContours()也很慢,而且需要收集所有包围该区域的小线段并排序。

    3.2K20

    基于OpenCV的特定区域提取

    今天我们将一起探究如何使用OpenCV和Python从图像中提取感兴趣区域(ROI)。 在之间的文章中,我们完成了图像边缘提取,例如从台球桌中提取桌边。...现在,我们可以使用OpenCV函数“ findContours()”提取该图像中的轮廓,并仅选择具有以下属性的轮廓: 1. 几何形状是圆形或椭圆形 2....面积大于某个阈值(在此示例中,值7000可以正常工作)。 对于第一部分,我们将使用OpenCV的“ boundingRect()”检测每个轮廓的边界矩形,并检查纵横比(高宽比)是否接近1。...使用非极大抑制可以解决此问题,即我们查看所有重叠的轮廓,然后选择面积最大的轮廓作为最终候选轮廓。逻辑非常简单,因此我们不需要任何内置的OpenCV或Python函数。...对段轮廓进行质心检测需要在轮廓上应用OpenCV “ moments()”函数,然后使用以下公式计算中心 X,Y坐标: center_x,center_y =(int(M [“ m10”] / M [”

    2.9K30

    总结 | 基于OpenCV提取特定区域方法汇总

    今天我们将一起探究如何使用OpenCV和Python从图像中提取感兴趣区域(ROI)。 在之间的文章中,我们完成了图像边缘提取,例如从台球桌中提取桌边。...现在,我们可以使用OpenCV函数“ findContours()”提取该图像中的轮廓,并仅选择具有以下属性的轮廓: 1. 几何形状是圆形或椭圆形 2....面积大于某个阈值(在此示例中,值7000可以正常工作)。 对于第一部分,我们将使用OpenCV的“ boundingRect()”检测每个轮廓的边界矩形,并检查纵横比(高宽比)是否接近1。...使用非极大抑制可以解决此问题,即我们查看所有重叠的轮廓,然后选择面积最大的轮廓作为最终候选轮廓。逻辑非常简单,因此我们不需要任何内置的OpenCV或Python函数。...对段轮廓进行质心检测需要在轮廓上应用OpenCV “ moments()”函数,然后使用以下公式计算中心 X,Y坐标: center_x,center_y =(int(M [“ m10”] / M [”

    4.3K20

    实战解惑 | OpenCV中如何提取不规则ROI区域

    、计算密度等,而且这些ROI区域往往不是矩形区域,一般都是不规则的多边形区域,很多OpenCV初学者都不知道如何提取这些不规则的ROI区域。...提取ROI区域 在做这个之前,首先来了解一下什么图像处理中的mask(遮罩),OpenCV中是如此定义Mask的:八位单通道的Mat对象,每个像素点值为零或者非零区域。...一个具体的示例如下: 可以看出,mask的作用是可以 帮助我们提取各种不规则的区域。OpenCV中完成上述步骤操作只需要简单调用API函数 bitwise_and 即可。...新手最迷茫的地方,如何通过程序生成mask,其实真的很简单。...ROI 生成Mask区域 提取指定轮廓 特别需要注意的是->其中生成Mask可以根据轮廓、二值化连通组件分析、inRange等处理方法得到。

    1.2K10

    OpenCV 轮廓 —— 轮廓匹配

    一个跟轮廓相关的最常用到的功能是如何匹配多条轮廓。我们或许需要比较两条计算好的轮廓,或者比较一条轮廓和一个抽象模板。这两种情况都会在本文讨论。...因此若图像为二值图(例如,所有像素都等于0或者1),则 m_{00} 代表图像上所有值非零的区域。当处理轮廓时,结果是轮廓的长度。...官方文档 仅适用于来自 Python 绑定的轮廓矩计算: 注意,输入数组的 numpy 类型应该是 np.int32或 np.float32。...对“相似”的定义可能有很多。为了使比较过程变得简单,OpenCV的函数cv2.matchShapes 允许我们简单提供两个物体,然后计算它们的矩,并根据我们提供的标准进行比较。...在 OpenCV 4.5.5 中还没有实现,有传说在 3.5 的版本中有相关函数 源码 https://github.com/zywvvd/Python_Practise/tree/master/OpenCV

    3.5K30
    领券