首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何计算3d扫描的腹部周长?

计算3D扫描的腹部周长可以通过以下步骤进行:

  1. 获取3D扫描数据:使用专业的3D扫描设备对腹部进行扫描,获取腹部的三维点云数据。
  2. 数据处理与重建:对获取的点云数据进行处理和重建,将其转换为三维模型。这可以通过使用计算机图形学和计算机视觉算法来实现。
  3. 提取腹部轮廓:从重建的三维模型中提取腹部的轮廓。这可以通过应用边缘检测、曲线拟合等图像处理技术来实现。
  4. 计算周长:根据提取的腹部轮廓,计算其周长。可以通过计算轮廓上各点之间的距离之和来实现。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云图像处理(https://cloud.tencent.com/product/tci):提供了丰富的图像处理能力,可用于图像分割、边缘检测等任务。
  • 腾讯云计算机视觉(https://cloud.tencent.com/product/cvi):提供了多种计算机视觉算法和模型,可用于图像处理和分析任务。
  • 腾讯云人工智能(https://cloud.tencent.com/product/ai):提供了多种人工智能服务和工具,可用于图像处理、模式识别等任务。

请注意,以上仅为示例,实际上还有许多其他腾讯云产品和服务可用于支持3D扫描和图像处理任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

ACOUSLIC-AI2024——腹围超声自动测量

在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

01

ACOUSLIC-AI2024——腹围超声自动测量验证集结果

在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

01
  • 2024年YOLO还可以继续卷 | MedYOLO是怎么从YOLO家族中一步一步走过来的?

    在3D医学影像中进行物体定位的标准方法是使用分割模型对感兴趣的目标进行 Voxel 到 Voxel 的标注。虽然这种方法使模型具有很高的准确性,但也存在一些缺点。为医学影像生成 Voxel 级准确的标注是一个耗时的过程,通常需要多个专家来验证标签的质量。由于标注者之间的变异性,器官或病变的医学术准确的分割可能会出现结构边界不确定的问题,这可能会导致附近组织中包含无关信息或排除相关信息。即使有高质量的标签,分割模型在准确标记目标结构边界时可能会遇到困难,通常需要后处理来填充缺失的内部体积并消除伪预测目标。总之,这使得分割模型的训练成本过高,同时可能会限制下游诊断或分类模型的预测能力。

    01

    AortaSeg2024——CTA主动脉相关区域子结构23类分割

    主动脉是身体最大的动脉,将含氧血液从心脏输送到头部、颈部、上肢、腹部、骨盆和下肢。主动脉及其主要分支的病变,如夹层、动脉瘤和动脉粥样硬化疾病,可能对生命或肢体造成直接威胁,需要及时进行手术评估和治疗。医学成像和治疗的进步,包括计算机断层扫描血管造影 (CTA) 和血管内主动脉支架移植术,导致主动脉疾病治疗的范式转变。例如,腹主动脉瘤血管内修复术现在已成为 80% 以上患者的一线治疗方法。对于涉及分支血管的微创修复,对主动脉和分支血管解剖结构进行详细的 3D 分析至关重要。这包括测量主动脉以及各个主动脉分支和区域的体积和直径,以选择适当的设备,这可以通过 CTA 上主动脉的多级分割来实现。

    01

    CyTran: Cycle-Consistent Transformers forNon-Contrast to Contrast CT Translation

    我们提出了一种新的方法,将不成对的对比度计算机断层扫描(CT)转换为非对比度CT扫描,反之亦然。解决这项任务有两个重要的应用:(i)为注射造影剂不是一种选择的患者自动生成对比CT扫描,以及(ii)通过在配准前减少造影剂引起的差异来增强对比CT和非对比CT之间的对准。我们的方法基于循环一致的生成对抗性卷积变换器,简称CyTran。由于循环一致性损失的积分,我们的神经模型可以在未配对的图像上进行训练。为了处理高分辨率图像,我们设计了一种基于卷积和多头注意力层的混合架构。此外,我们还介绍了一个新的数据集Coltea-Lung-CT-100W,其中包含从100名女性患者中收集的3D三相肺部CT扫描(共37290张图像)。每次扫描包含三个阶段(非造影、早期门静脉和晚期动脉),使我们能够进行实验,将我们的新方法与最先进的图像风格转移方法进行比较。我们的实证结果表明,CyTran优于所有竞争方法。此外,我们表明CyTran可以作为改进最先进的医学图像对齐方法的初步步骤。

    02

    ICCV 2023:CLIP 驱动的器官分割和肿瘤检测通用模型

    这次要介绍的文章属于 CLIP 在医学图像上的一个应用,思路上不算是创新。CLIP(Contrastive Language-Image Pre-training)是一种多模态模型,这意味着它可以同时处理文本和图像数据。它的目标是将文本描述和图像内容关联起来,使得模型能够理解文本描述与图像之间的语义关系。它通过学习大量的文本和图像来获得对于语义理解的通用知识,这种通用知识可以在各种具体任务中进行微调,使得模型可以适应不同领域的任务。CLIP 使用对比学习的方法来训练模型。它要求模型将相关的文本描述和图像匹配在一起,而将不相关的文本描述和图像分开。这样,模型可以学习如何捕捉文本和图像之间的语义相似性。

    08

    MultiNationalCTLiver2024——多国胸部CT肝实质分割

    肝脂肪变性或脂肪肝疾病是一种病理状况,其中肝内脂肪等于或大于肝脏重量的5%。这种情况会增加肝硬化、终末期肝功能衰竭和早期死亡的风险。目前,肝活检是肝脂肪变性的诊断标准,但由于侵入性和发病风险,这种工具受到限制。非侵入性技术被广泛用于解决这一局限性,例如超声 (US)、磁共振成像 (MRI) 和计算机断层扫描 (CT)。虽然 MRI 是一种非侵入性首选,但值得注意的是,平扫CT在测量肝脏脂肪方面具有线性等效性。因此,平扫 CT 已成为一种可行的替代方案,特别是用于检测中度至重度脂肪变性。在影像覆盖范围内,胸部 CT 因其广泛可用性和频繁使用而对评估肝脏脂肪具有重要价值。例如,在现有的肺癌筛查和 COVID-19 患者图像中,平扫胸部 CT 非常实用,尤其是在无法进行腹部 CT 检查的情况下。研究人员已经建立了各种指标来评估 CT 图像上的肝脏脂肪变性,包括肝脾衰减比、肝脾衰减差以及单独肝脏衰减的阈值。值得注意的是,肝脏衰减阈值 ≤ 40 亨斯菲尔德单位 (HU) 可以作为独立指标。放射科医生在圆形感兴趣区域 (ROI) 上测量肝脏衰减以表示整个肝脏的脂肪含量。然而,对于基于人群的研究来说,这种测量需要大量时间和专业知识,这对肝脏疾病的偶然评估和临床相互作用构成了挑战。考虑到脂肪肝的普遍性,数百万处于风险中的个体可能未被发现。因此,在大规模临床研究中,一种自动化工具成为识别这些潜在患者的迫切需要。

    01
    领券