首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R tips:细究FactoMineR的z-score标准化细节

函数所进行的降维分析,现在关注它的一个问题:它进行PCA分析时是否对数据进行了标准化处理以及如何设置进行标准化处理?...矩阵乘法代表表达矩阵的每一列都是和这个行权重的线性组合,其结果就是一个均值。 后面的代码就是将原来的表达矩阵减去这个均值向量即可,之所以要转置是因为R中的矩阵默认是进行列方向的自动对齐。...除以标准差 再往下就是将每一个基因的标准差调为1,也就是先计算每一列的标准差,再将每一列除以各自的标准差。...在ec.tab函数内部,计算标准差的是(1)先计算方差:crossprod(poids/sum(poids), as.matrix(V^2),同样的sum(poids)的值也是1可以省略,对表达矩阵的每一列的平方值进行线性组合就是方差值...计算好了标准差后,同样的道理需要先将原始表达矩阵转置,将每一列除以各自的标准差即可:X <- t(t(X)/ecart.type)。

1.7K20

问与答63: 如何获取一列数据中重复次数最多的数据?

学习Excel技术,关注微信公众号: excelperfect Q:如下图1所示,在工作表列A中有很多数据(为方便表述,示例中只放置了9个数据),这些数据中有很多重复数据,我想得到重复次数最多的数据是那个...,示例中可以看出是“完美Excel”重复的次数最多,如何获得这个数据?...在上面的公式中: MATCH($A$1:$A$9,$A$1:$A$9,0) 在单元格区域A1:A9中依次分别查找A1至A9单元格中的数据,得到这些数据第1次出现时所在的行号,从而形成一个由该区域所有数据第一次出现的行号组组成的数字数组...MODE函数从上面的数组中得到出现最多的1个数字,也就是重复次数最多的数据在单元格区域所在的行。将这个数字作为INDEX函数的参数,得到想应的数据值。...,则上述公式只会获取第1个数据,其他的数据怎么得到呢?

3.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    问与答62: 如何按指定个数在Excel中获得一列数据的所有可能组合?

    excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...如何实现? ? 图1 (注:这是无意在ozgrid.com中看到的一个问题,我觉得程序编写得很巧妙,使用了递归的方法来解决,非常简洁,特将该解答稍作整理后辑录于此与大家分享!)...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2

    5.6K30

    【大数据问答】R语言如何导入其他统计软件中的数据?

    R语言如何导入其他统计软件中的数据? R导入SAS数据集可以使用 foreign 包中的 read.ssd() 和 Hmisc 包中的 sas.get() 。...在SAS中使用 PROC EXPORT 将SAS数据集保存为一个逗号分隔的文本文件,使用从.csv格式的文件中导入数据,使用read.csv()函数或者read.table()函数。...或者 一款名为Stat/Transfer的商业软件将SAS数据集为R数据框。...R导入SPSS数据集可以通过 foreign 包中的 read.spss()函数 或者Hmisc 包中的 spss.get() 函数。...导入Stata数据集可以通过foreign包中的read.dta()函数。 【温馨提示】foreign包和Hmisc包都是的R的扩展包,因此在使用之前,若是 没有安装,需要先安装。

    1.8K30

    怎么用R语言把表格CSV文件中的数据变成一列,并且行名为原列名呢,谢谢

    今天收到一封邮件,来询问这样的问题: [5veivplku0.png] 这样的邮件,是直接的邮件,没有寒暄直奔主题的邮件。...唯一的遗憾是不知道是谁写的…… 如果我理解的没有错误的话,写信人的需求应该是这个样子的: 他的原始数据: [8vd02y0quw.png] 处理后想要得到的数据: [1k3z09rele.png] 处理代码...rnorm(10),y2=rnorm(10),y3=rnorm(10),y4=rnorm(10)) dd library(data.table) melt(dd,id=1) 代码解释: 1,dd为模拟生成的数据框数据...,第一列为ID,其它几列为性状 2,使用的函数为data.table包中的melt函数 3,melt中,dd为对象数据框,id为不变的列数,这里是ID一列,列数所在的位置为1,其它几列都变成一列,然后列名变为行名...来信者需求: 怎么用R语言把表格CSV文件中的数据变成一列,并且行名为原列名呢,谢谢 1,csv文件,可以用fread函数读取,命名,为dd 2,数据变为一列,如果没有ID这一列,全部都是性状,可以这样运行

    6.9K30

    使用R语言的TCseq包分析基因表达的时间趋势并划分聚类群

    本篇主要通过一个涉及时间序列的蛋白质组学数据集,简单演示如何在R语言中使用TCseq包分析蛋白质表达的时间趋势,并根据时间表达模式的相似性实现聚类的过程。...表格第一列为蛋白质名称,随后几列依次为这些蛋白质在小鼠胚胎着床前发育的6个阶段中的相对丰度数值。...加载TCseq包,将上述数据表读取到R中,转换为矩阵类型后,直接作为聚类函数timeclust()的输入。...,行为基因或蛋白名称,列为时间样本 #每一列是独立的时间单位,按时间顺序提前排列好,若存在生物学重复(即一个时间点对应多个样本时)建议提前取均值 protein 中,通过计算 membership 值判断蛋白质所属的聚类群,以最大的 membership 值为准 #查看本次计算的各蛋白的 membership 值,展示前几个为例 head(tcseq_cluster

    5.3K10

    如何使用R的sweep函数对表达矩阵进行标准化

    如下图所示 除了中位数标准化之外,我们还可以使用z-score的方法来对表达谱数据进行标准化: z-score=(表达量-均值)/标准差 那么下面小编就给大家演示一下如何使用前面讲到的☞R中的sweep...gene10 rownames(data)=paste0("gene",1:10) #设置列明是sample1到sample10 colnames(data)=paste0("sample",1:10) #计算每一行的均值...rowmean=apply(data,1,mean) #计算每一行的标准差 rowsd=apply(data,1,sd) #每一行基因表达值减去这一行的均值 data1=sweep(data,1,rowmean...) #每一行基因表达值除以这一行的标准差 data2=sweep(data1,1,rowsd,'/') data2 得到的结果如下 如果对R里面scale这个函数比较熟悉的小伙伴,可能已经发现了,scale...这个函数就能完成z-score的计算,我们来看看这个函数的说明 我们来看看scale这个函数的效果 #因为scale默认对列做操作,所以这里先用t对表达矩阵做一个转置 #计算完再用t转置回来 data3

    1.3K10

    多因子模型之因子(信号)测试平台----python中Pandas做处理时内存节省的技巧

    之前看到过一篇文章,讲的就是如何在使用pandas的时候降低内存的开销。...(memory_usage='deep')     首先,我们读取total_data.csv这个数据,并制定第一列是index,然后,我们获取一下这个dataframe这个对象在内存中的情况。...non-null float64 dtypes: float64(9), int64(2), object(2) memory usage: 14.4 MB     我们可以看到,这个dataframe每一列的数据类型...3.修改数字    其实,pandas在读取csv的时候,可以定义读取每一列的类型的,我们看到上面默认是float64,对于整数,默认是int64,知道一点计算机知识的都明白,很多时候我们是不需要这么float64...4.catrgory类     然后是最后一个大杀器,就是当某一列中,有很多重复元素的时候,其实必然是存在冗余的,比如,我们的dataframe中股票代码,sec_id和行业类别,group这两列,肯定有很多重复的

    1.1K40

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...例 1 在此示例中,我们创建了一个空数据帧。然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。

    46030

    可变形卷积在视频学习中的应用:如何利用带有稀疏标记数据的视频帧

    卷积层是卷积神经网络的基本层。虽然它在计算机视觉和深度学习中得到了广泛的应用,但也存在一些不足。...由于这些像素级别的标注会需要昂贵成本,是否可以使用未标记的相邻帧来提高泛化的准确性?具体地说,通过一种使未标记帧的特征图变形为其相邻标记帧的方法,以补偿标记帧α中的丢失信息。...学习稀疏标记视频的时间姿态估计 这项研究是对上面讨论的一个很好的解决方案。由于标注成本很昂贵,因此视频中仅标记了少量帧。然而,标记帧图像中的固有问题(如遮挡,模糊等)阻碍了模型训练的准确性和效率。...利用多分辨率特征金字塔构造可变形部分,并采用不同的扩张方法。该方法的优点在于,我们可以利用相邻的未标记帧来增强已标记帧的特征学习,因为相邻帧相似,我们无需对视频的每一帧进行标记。...结论 将可变形卷积引入到具有给定偏移量的视频学习任务中,通过实现标签传播和特征聚合来提高模型性能。与传统的一帧一标记学习方法相比,提出了利用相邻帧的特征映射来增强表示学习的多帧一标记学习方法。

    2.8K10

    这些数据处理方法你get了么?

    6、占比归一化,即是对应数据xi与数据总和xsum相除: yi = xi/xsum; 7、z-score标准化,即是将对应数据xi减去数据平均值xmean,再与数据标准差xstd;相除: yi = (...'均值归一化';'占比归一化';'z-score标准化';'log10归一化';'反正切归一化';......,'r-.'}; % 设置归一化方法种类数 N = 10; % 取第一列数据作为测试 xm = mean(x(:,1)); xs = std(x(:,1)); xcv = xm/xs; % 初始化归一化结果...y = zeros(m,n,N); % 将N中归一化计算结果存入y中 for k = 1:N % 调用第k中处理方法并存入y中 y(:,:,k) = normalization(x,k...',1.5);title('原始数据'); subplot(1,2,2); hold on; % 计算第一列处理后的均值 ym = zeros(1,N); % 计算第一列处理后的方差 ys = zeros

    2K30

    正态分布

    常见的数据变换的方法: 数据平滑:去除数据中的噪声,将连续数据离散化。...这样“总和”这个属性就可以用到后续的数据挖掘计算中。 数据进行规范处理的三种方法: 1. Min-max 规范化 Min-max 规范化方法是将原始数据变换到 [0,1] 的空间中。...虽然两个人都考了 80 分,但是 A 的 80 分与 B 的 80 分代表完全不同的含义。 那么如何用相同的标准来比较 A 与 B 的成绩呢?Z-Score 就是用来可以解决这一问题的。...例子: # coding:utf-8 from sklearn import preprocessing import numpy as np # 初始化数据,每一行表示一个样本,每一列表示一个特征...-0.3 0.1] [ 0.3 0.1 0.2] [ 0. 0.1 -0.1]] 总结: 在数据变换中, 重点是如何将数值进行规范化__ ,有三种常用的规范方法,分别是

    1.7K20

    关于机器学习,你需要了解的规范化方法

    preprocessing import numpy as np # 初始化数据,每一行表示一个样本,每一列表示一个特征 x = np.array([[ 0., -3., 1.],...虽然两个人都考了 80 分,但是 A 的 80 分与 B 的 80 分代表完全不同的含义。 那么如何用相同的标准来比较 A 与 B 的成绩呢?Z-Score 就是用来可以解决这一问题的。...]]) # 将数据进行 Z-Score 规范化 scaled_x = preprocessing.scale(x) print (scaled_x) 我们能看到 Z-Score 的优点是算法简单...,不受数据量级影响,结果易于比较。...不足在于,它需要数据整体的平均值和方差,而且结果没有实际意义,只是用于比较。3.小数定标规范 小数定标规范化就是通过移动小数点的位置来进行规范化。小数点移动多少位取决于属性 A 的取值中的最大绝对值。

    74130

    考试成绩要求正态分布合理么?

    这样“总和”这个属性就可以用到后续的数据挖掘计算中。 在这些变换方法中,最简单易用的就是对数据进行规范化处理。下面我来给你讲下如何对数据进行规范化处理。 数据规范化的几种方法 1....虽然两个人都考了80分,但是A的80分与B的80分代表完全不同的含义。 那么如何用相同的标准来比较A与B的成绩呢?Z-Score就是用来可以解决这一问题的。...我们来看下下面这个例子: # coding:utf-8 from sklearn import preprocessing import numpy as np # 初始化数据,每一行表示一个样本,每一列表示一个特征...我们看到Z-Score规范化将数据集进行了规范化,数值都符合均值为0,方差为1的正态分布。 3. 小数定标规范化 我们需要用NumPy库来计算小数点的位数。NumPy库我们之前提到过。...在数据变换中,重点是如何将数值进行规范化,有三种常用的规范方法,分别是Min-Max规范化、Z-Score规范化、小数定标规范化。

    3.2K20

    机器学习笔记——特征标准化

    数据标准化是在特征处理环节必不可少的重要步骤。 数据标准化是为了消除不同指标量纲的影响,方便指标之间的可比性,量纲差异会影响某些模型中距离计算的结果。 常见标准化方法主要有归一化、正态化。...数据归一化也即0-1标准化,又称最大值-最小值标准化,核心要义是将原始指标缩放到0~1之间的区间内。相当于对原变量做了一次线性变化。...EX = (x - mean)/σ R语言中的特征标准化: library("caTools") library("scales") data(iris) split = sample.split(iris...z-score标准化 训练集第一列的均值和方差如下 train_data.iloc[:,0].mean();train_data.iloc[:,0].std() 5.86166666666666 40.8416853174847874...,需要视具体场景和数据量级差异而定,小编也在摸索中。

    69430

    R语言学习 - 热图简化

    相比于ggplot2作heatmap, pheatmap会更为简单一些,一个函数设置不同的参数,可以完成行列聚类、行列注释、Z-score计算、颜色自定义等。那我们来看看效果怎样。...在heatmap美化篇提到的数据前期处理方式,都可以用于pheatmap的画图。此外Z-score计算在pheatmap中只要一个参数就可以实现。...假如有两个文件,第一个文件为行注释,其第一列与矩阵中的第一列内容相同 (顺序没有关系),其它列为第一列的不同的标记,如下面示例中(假设行为基因,列为样品)的2,3列对应基因的不同类型 (TF or enzyme...第二个文件为列注释,其第一列与矩阵中第一行内容相同,其它列则为样品的注释。...为了简化绘图、维持脚本的一致,我用bash对R做了一个封装,然后就可以通过修改命令好参数绘制不同的图了。 先看一看怎么使用 首先把测试数据存储到文件中方便调用。

    2.8K90

    图形解读系列 | 给你5个示例,你能看懂常用热图使用吗?

    从横轴的注释和标记可以看出,每一列对应于采样时水稻在田地里的生长天数; 从纵轴的文字可以看出,每一行是一种关注的菌。 每个框的颜色代表对应菌群在对应采样时间的丰度信息。...Z-score是常用的数据归一化方式,用来展示数据相比于均值上调或下调了多少倍的标准差 (X-mean)/SD。此处反应的是OTU的相对丰度变化。...在R语言 - 热图美化中讲述过其如何获得和用途是什么。 ?...slug=fulltext Metaphlan2获得的宏基因组物种丰度图谱 图中每一行代表一种菌或菌群,每一列是一个样品。...这是理解图的关键,也是画图的关键。热图绘制需要的数据与最后呈现的热图一般是一致的,数据中每一行对应于热图中每一行,数据中每一列对应于热图每一列。如果做了聚类分析,顺序可能会变。

    7.2K31

    精品教学案例 | 基于TensorFlow实现LSTM对股票收盘价走势的预测

    Min-max标准化公式为:新数据=(原始数据-最小值)/(最大值-最小值) Z-score标准化公式为:新数据=(原始数据-均值)/ 标准差 本案例中采用的标准化方式为Z-score标准化。...# 取出数据中需要的部分,从第二列取至最后一列 data = df.iloc[:,1:].values 可以看到数据集包含了日期、开盘价、最高价、收盘价等数据,除了包含日期的第一列之外,其它数据均对预测有价值...15个维度的数据,其中第一列为日期,最后一列为所需预测的标签,将其去除之后还有13个维度的特征。...同时,用数据集的每一组特征组合为一个列表,用每一组的标签值组合为另一个列表,训练集和测试集通过循环结构填充自己的两个列表,由此完成数据集的拆分。...每一组数据跨度为time_step的值,本案例中后续设置time_step为20,即每一组数据长度为20。

    4.6K10

    Python代码实操:详解数据清洗

    通过 for 循环遍历可迭代的列表值。 自定义代码实现了 Z-Score 计算公式。 通过Pandas的 duplicated() 判断重复数据记录。...z_score = (df_col - df_col.mean()) / df_col.std() # 计算每列的Z-score得分 df_zscore[col] = z_score.abs...本过程中,先通过 df.copy() 复制一个原始数据框的副本,用来存储Z-Score标准化后的得分,再通过 df.columns 获得原始数据框的列名,接着通过循环判断每一列中的异常值。...在判断逻辑中,对每一列的数据进行使用自定义的方法做Z-Score值标准化得分计算,然后与阈值2.2做比较,如果大于阈值则为异常。...Python自带的内置函数 set 方法也能返回唯一元素的集合。 上述过程中,主要需要考虑的关键点是:如何对重复值进行处理。

    5K20

    Power Pivot中如何计算具有相同日期数据的移动平均?

    (四) 如何计算具有相同日期数据的移动平均? 数据表——表1 ? 效果 ? 1. 解题思路 具有相同日期数据,实际上也就是把数据进行汇总求和后再进行平均值的计算。其余和之前的写法一致。...建立数据表和日期表之间的关系 2. 函数思路 A....函数汇总 5日移动平均:= var pm=[排名] return if([排名]>5 && [汇总金额]BLANK() , //满足5日均线计算条件 AverageX(Filter(All...Blank() ) 至此同日期数据进行移动平均的计算就出来了。...满足计算的条件增加1项,即金额不为空。 是通过日历表(唯一值)进行汇总计算,而不是原表。 计算的平均值,是经过汇总后的金额,而不单纯是原来表中的列金额。

    3.1K10
    领券