首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何计算c中的整数幂

计算整数幂的方法是使用循环或递归。以下是一个简单的示例,说明如何在C语言中计算整数幂:

代码语言:c
复制
#include<stdio.h>

int power(int base, int exponent) {
    int result = 1;
    for (int i = 0; i< exponent; i++) {
        result *= base;
    }
    return result;
}

int main() {
    int base = 2;
    int exponent = 3;
    int result = power(base, exponent);
    printf("%d的%d次幂是%d\n", base, exponent, result);
    return 0;
}

在这个示例中,我们定义了一个名为power的函数,它接受两个参数:baseexponent。函数使用一个循环来计算baseexponent次幂,并将结果存储在result变量中。最后,main函数中调用了power函数,并输出结果。

这个示例中的代码可以直接复制到C语言编译器中进行编译和运行。如果您需要计算其他整数幂,只需更改baseexponent变量的值即可。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

25行代码实现完整的RSA算法

python3.X版本的请点击这里25行代码实现完整的RSA算法   网络上很多关于RSA算法的原理介绍,但是翻来翻去就是没有一个靠谱、让人信服的算法代码实现,即使有代码介绍,也都是直接调用JDK或者Python代码包中的API实现,也有可能并没有把核心放在原理的实现上,而是字符串转数字啦、或者数字转字符串啦、或者即使有代码也都写得特别烂。无形中让人感觉RSA加密算法竟然这么高深,然后就看不下去了。看到了这样的代码我就特别生气,四个字:误人子弟。还有我发现对于“大整数的幂次乘方取模”竟然采用直接计算的幂次的值,再取模,类似于(2 ^ 1024) ^ (2 ^ 1024),这样的计算就直接去计算了,我不知道各位博主有没有运行他们的代码???知道这个数字有多大吗?这么说吧,把全宇宙中的物质都做成硬盘都放不下,更何况你的512M内存的电脑。所以我说他们的代码只可远观而不可亵玩已。   于是我用了2天时间,没有去参考网上的代码重新开始把RSA算法的代码完全实现了一遍以后发现代码竟然这么少,基本上25行就全部搞定。为了方便整数的计算,我使用了Python语言。为什么用Python?因为Python在数值计算上比较直观,即使没有学习过python的人,也能一眼就看懂了代码。而Java语言需要用到BigInteger类,数值的计算都是用方法调用,所以使用起来比较麻烦。如果有同学对我得代码感兴趣的话,先二话不说,不管3X7=22,把代码粘贴进pydev中运行一遍,是驴是马拉出来溜溜。看不懂可以私信我,我就把代码具体讲讲,如果本文章没有人感兴趣,我就不做讲解了。 RSA算法的步骤主要有以下几个步骤:     1、选择 p、q两个超级大的质数 ,都是1024位,显得咱们的程序货真价实。     2、令n = p * q。取 φ(n) =(p-1) * (q-1)。 计算与n互质的整数的个数。     3、取 e ∈ 1 < e < φ(n) ,( n , e )作为公钥对,正式环境中取65537。可以打开任意一个被认证过的https证书,都可以看到。     4、令 ed mod φ(n) = 1,计算d,( n , d ) 作为私钥对。 计算d可以利用扩展欧几里的算法进行计算,非常简单,不超过5行代码就搞定。     5、销毁 p、q。密文 = 明文 ^ e mod n , 明文 = 密文 ^ d mod n。利用蒙哥马利方法进行计算,也叫反复平方法,非常简单,不超过10行代码搞定。     实测:秘钥长度在2048位的时候,我的thinkpad笔记本T440上面、python2.7环境的运行时间是0.035秒,1024位的时候是0.008秒。说明了RSA加密算法的算法复杂度应该是O(N^2),其中n是秘钥长度。不知道能不能优化到O(NlogN)   代码主要涉及到三个Python可执行文件:计算最大公约数、大整数幂取模算法、公钥私钥生成及加解密。这三个文件构成了RSA算法的核心。   这个时候很多同学就不干了,说为什么我在网上看到的很多RSA理论都特别多,都分很多个章节,在每个章节中,都有好多个屏幕才能显示完,这么多的理论,想想怎么也得上千行代码才能实现,怎么到了你这里25行就搞定了呢?北门大官人你不会是在糊弄我们把?其实真的没有,我是良心博主,绝对不会糊弄大家,你们看到的理论确实这么多,我也都看过了,我把这些理论用了zip,gzip,hafuman,tar,rar等很多的压缩算法一遍遍地进行压缩,才有了这个微缩版的rsa代码实现,代码虽少,五脏俱全,是你居家旅行,课程设计、忽悠小白、必备良药。其实里边的几乎每一行代码都能写一篇博客专门进行介绍。   前方高能,我要开始装逼了。看不懂的童鞋请绕道,先去看看理论,具体内容如下:   1. 计算最大公约数   2. 超大整数的超大整数次幂取超大整数模算法(好拗口,哈哈,不拗口一点就显示不出这个算法的超级牛逼之处)   3. 公钥私钥生成

02
  • C51浮点数显示、浮点数表示方法

    Float 浮点形,它是符合IEEE-754标准的单精度浮点形数据,在十进制中具有7位有效数字。FLOAT型据占用四个字节(32位二进制数),在内存中的存放格式如下: 字节地址(由低到高)0 1 2 3 浮点数内容 MMMMMMMM MMMMMMMM E MMMMMMM S EEEEEEE 其中,S为符号位,存放在最高字节的最高位。“1”表示负,“0”表示正。E为阶码,占用8位二进制数,存放在高两个字节中。注意,阶码E值是以2为底的指数再加上偏移量127,这样处理的目的是为了避免出现负的阶码值,而指数是可正可负的。阶码E的正常取值范围是1~254,从而实际指数的取值范围为-126-127。M为尾数的小数部分,用23位二进制数表示,存放在低三个字节中。尾数的整数部分永远为1,因此不予保存,但它是隐含的。小数点位于隐含的整数位“1”的后面。

    03
    领券