首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何计算nifti医学图像的单个体素的体积?

计算nifti医学图像的单个体素的体积可以通过以下步骤实现:

  1. 首先,加载nifti医学图像文件。NIfTI(Neuroimaging Informatics Technology Initiative)是一种常用的医学图像格式,可以使用相应的库或软件加载和处理该格式的图像文件。
  2. 确定体素的尺寸。通过读取nifti图像的头文件信息,可以获取图像的尺寸信息,包括体素在三个维度上的数量和每个体素的尺寸。
  3. 计算体素的体积。根据体素的尺寸信息,可以计算单个体素的体积。体积的计算公式为:体积 = 体素尺寸X * 体素尺寸Y * 体素尺寸Z,其中X、Y、Z分别表示体素在三个维度上的尺寸。
  4. 可以通过编程语言或工具进行计算。根据你熟悉的编程语言,可以编写相应的代码来实现体积的计算。例如,使用Python可以使用开源库如nibabel来加载和处理nifti图像文件,并通过简单的乘法运算计算体素的体积。
  5. 应用场景:计算nifti医学图像的单个体素的体积在医学影像领域具有广泛的应用。例如,在研究中可以用于评估器官或病变的大小、形态学分析、疾病进展的监测等。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云医疗影像智能分析平台:提供医学影像处理和分析的云服务,支持医学图像的解析、分割、特征提取等功能。详情请参考:https://cloud.tencent.com/product/miip
  • 腾讯云人工智能平台:提供丰富的人工智能服务,包括图像识别、语音识别、自然语言处理等。详情请参考:https://cloud.tencent.com/product/ai
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Brain:一种用于阿尔兹海默症(AD)分类的可解释的深度学习框架

    阿尔茨海默病是全球范围内痴呆症的主要原因,随着人口老龄化,其发病率负担日益加重,可能超过诊断和管理能力。目前的方法综合了病史、神经心理测试和MRI来识别可能的病例,但有效的做法仍然存在差异,缺乏敏感性和特异性。该研究报告了一种可解释的深度学习策略,其以MRI、年龄、性别和精神状态测试分数的多模态信息作为输入,可以描述独特的阿尔茨海默病特征。我们的框架连接了一个全卷积网络,该网络构建了从局部大脑结构到多层感知器的疾病概率的高分辨率地图,并在准确诊断的过程中生成精确、直观的阿尔茨海默病个体风险可视化。该模型使用阿尔茨海默病神经成像倡议(ADNI)数据集(n = 417)中的临床诊断阿尔茨海默病和认知正常受试者进行训练,并在三个独立队列中进行验证:澳大利亚衰老成像、生物标志物和生活方式旗舰研究(AIBL) (n = 382)、弗雷明汉心脏研究(n = 102)和国家阿尔茨海默病协调中心(NACC) (n = 582)。使用多模态输入的模型在不同数据集上表现一致,ADNI研究、AIBL、Framingham心脏研究和NACC数据集的曲线下平均面积分别为0.996、0.974、0.876和0.954。此外,我们的方法超过了由多机构执业神经学家组成的团队(n = 11)的诊断性能,并且该模型预测的高风险大脑区域密切跟踪了死后的组织病理学结果。该框架提供了一种临床适应性策略,可以使用常规可用的成像技术(如MRI)来生成阿尔茨海默病诊断的细微神经成像信号,以及一种可推广的方法,将深度学习与人类疾病的病理生理过程联系起来。

    03

    2024年YOLO还可以继续卷 | MedYOLO是怎么从YOLO家族中一步一步走过来的?

    在3D医学影像中进行物体定位的标准方法是使用分割模型对感兴趣的目标进行 Voxel 到 Voxel 的标注。虽然这种方法使模型具有很高的准确性,但也存在一些缺点。为医学影像生成 Voxel 级准确的标注是一个耗时的过程,通常需要多个专家来验证标签的质量。由于标注者之间的变异性,器官或病变的医学术准确的分割可能会出现结构边界不确定的问题,这可能会导致附近组织中包含无关信息或排除相关信息。即使有高质量的标签,分割模型在准确标记目标结构边界时可能会遇到困难,通常需要后处理来填充缺失的内部体积并消除伪预测目标。总之,这使得分割模型的训练成本过高,同时可能会限制下游诊断或分类模型的预测能力。

    01

    BRAIN:用于阿尔茨海默病分类的可解释深度学习框架的开发和验证

    阿尔茨海默症是全世界痴呆症的主要病因,随着人口老龄化,患病负担不断增加,在未来可能会超出社会的诊断和管理能力。目前的诊断方法结合患者病史、神经心理学检测和MRI来识别可能的病例,然而有效的做法仍然应用不一,缺乏敏感性和特异性。在这里,本文报告了一种可解释的深度学习策略,该策略从MRI、年龄、性别和简易智力状况检查量表(mini-mental state examination ,MMSE) 得分等多模式输入中描绘出独特的阿尔茨海默病特征(signatures)。该框架连接了一个完全卷积网络,该网络从局部大脑结构到多层感知器构建了疾病概率的高分辨率图,并对个体阿尔茨海默病风险进行了精确、直观的可视化,以达到准确诊断的目的。该模型使用临床诊断的阿尔茨海默病患者和认知正常的受试者进行训练,这些受试者来自阿尔茨海默病神经影像学倡议(ADNI)数据集(n = 417),并在三个独立的数据集上进行验证:澳大利亚老龄化影像、生物标志物和生活方式研究(AIBL)(n = 382)、弗雷明汉心脏研究(FHS)(n = 102)和国家阿尔茨海默病协调中心(NACC)(n = 582)。使用多模态输入的模型的性能在各数据集中是一致的,ADNI研究、AIBL、FHS研究和NACC数据集的平均曲线下面积值分别为0.996、0.974、0.876和0.954。此外,本文的方法超过了多机构执业神经科医生团队(n = 11)的诊断性能,通过密切跟踪死后组织病理学的损伤脑组织验证了模型和医生团队的预测结果。该框架提供了一种可适应临床的策略,用于使用常规可用的成像技术(如MRI)来生成用于阿尔茨海默病诊断的细微神经成像特征;以及将深度学习与人类疾病的病理生理过程联系起来的通用方法。本研究发表在BRAIN杂志。

    01

    AutoPET2024——多示踪剂多中心全身 PET/CT 中的自动病灶分割

    第三届 autoPET 挑战赛是在多示踪剂多中心环境中进一步完善正电子发射断层扫描/计算机断层扫描 (PET/CT) 扫描中肿瘤病变的自动分割。在过去的几十年里,PET/CT 已成为肿瘤诊断、管理和治疗计划的关键工具。在临床常规中,医学专家通常依赖 PET/CT 图像的定性分析,尽管定量分析可以实现更精确和个性化的肿瘤表征和治疗决策。临床采用的一个主要方法是病灶分割,这是定量图像分析的必要步骤。手动执行非常繁琐、耗时且成本高昂。机器学习提供了对 PET/CT 图像进行快速、全自动定量分析的潜力,正如之前在前两个 autoPET 挑战中所证明的那样。基于在这些挑战中获得的见解,autoPET III 扩大了范围,以满足模型在多个示踪剂和中心之间推广的关键需求。为此,提供了更多样化的 PET/CT 数据集,其中包含从两个不同临床站点获取的两种不同示踪剂的图像-前列腺特异性膜抗原 (PSMA) 和氟脱氧葡萄糖 (FDG)(如下图)。在本次挑战中,提供了两个奖项类别任务。在第一类奖项中,任务是开发适用于两种不同追踪器的强大分割算法。在第二类奖项中,讨论了数据质量和预处理对算法性能的重要性。在这里,鼓励参与者使用创新的数据管道增强基线模型,促进以数据为中心的自动化 PET/CT 病变分割方法的进步。加入 autoPET III,为 PET/CT 中基于深度学习的强大医学图像分析铺平道路,优化肿瘤学诊断和个性化治疗指导。

    01

    DCP:一款用于弥散磁共振成像连接组学的工具箱

    摘要:由弥散磁共振成像(dMRI)衍生的大脑结构网络反映了大脑区域之间的白质连接,可以定量描述整个大脑的解剖连接模式。结构性脑连接组的发展导致了大量dMRI处理包和网络分析工具箱的出现。然而,基于dMRI数据的全自动网络分析仍然具有挑战性。在这项研究中,我们开发了一个名为“扩散连接组管道”(DCP)的跨平台MATLAB工具箱,用于自动构建大脑结构网络并计算网络的拓扑属性。该工具箱集成了一些开发的软件包,包括 FSL、Diffusion Toolkit、SPM、Camino、MRtrix3和MRIcron。它可以处理从任意数量的参与者那里收集的原始dMRI数据,并且还与来自HCP和英国生物样本库等公共数据集的预处理文件兼容。此外,友好的图形用户界面允许用户配置他们的处理管道,而无需任何编程。为了证明DCP的能力和有效性,使用DCP进行了两次测试。结果表明,DCP可以重现我们之前研究的发现。但是,DCP存在一些局限性,例如依赖 MATLAB 并且无法修复基于度量的加权网络。尽管存在这些局限性,但总体而言,DCP软件为白质网络构建和分析提供了标准化的全自动计算工作流程,有利于推进未来人脑连接组学应用研究。

    01

    复旦大学提出SemiSAM | 如何使用SAM来增强半监督医学图像分割?这或许是条可行的路!

    医学图像分割的目标是从医学图像(如器官和病变)中识别特定的解剖结构,这是为提供可靠的体积和形状信息并协助许多临床应用(如疾病诊断和定量分析)提供基础和重要的一步。尽管基于深度学习的方法在医学图像分割任务上表现出色,但大多数这些方法都需要相对大量的优质标注数据进行训练,而获取大规模的仔细 Token 数据集是不切实际的,尤其是在医学成像领域,只有专家能够提供可靠和准确的分割标注。此外,常用的医学成像模式如CT和MRI是3D体积图像,这进一步增加了手动标注的工作量,与2D图像相比,专家需要逐层从体积切片进行分割。

    01

    利用视听短片从自然刺激中获得开放的多模式iEEG-fMRI数据集

    在认知神经科学领域,数据共享和开放科学变得越来越重要。虽然许多参与认知神经科学实验的志愿者的数据集现在是公开可用的,但颅内脑电图(iEEG)数据的共享相对较少。iEEG是一种高时间和空间分辨率的记录技术,通过在患者进行罕见的癫痫发作来源定位程序期间进行记录获得。与非侵入性记录技术相比,iEEG具有许多优点,如更好的信噪比和更精确的神经信号。iEEG对于研究高级认知过程(如语言、语义和概念表示)以及开发脑机接口具有重要意义。然而,由于收集困难和道德协议的限制,共享iEEG数据的机会相对较少。共享这些数据将有助于解决科学可重复性问题并促进更充分的数据利用。

    01

    医学图像处理

    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至 定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用[1,2]。目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。

    04

    AD分类论文研读(1)

    原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化。该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然图像得到的预训练权重来初始化最先进的VGG和Inception结构,使用少量的MRI图像来重新训练全连接层。采用图像熵选择最翔实的切片训练,通过对OASIS MRI数据集的实验,他们发现,在训练规模比现有技术小近10倍的情况下,他们的性能与现有的基于深层学习的方法相当,甚至更好 介绍 AD的早期诊断可以通过机器学习自动分析MRI图像来实现。从头开始训练一个网络需要大量的资源并且可能结果还不够好,这时候可以选择使用微调一个深度网络来进行转移学习而不是重新训练的方法可能会更好。该研究使用VGG16和Inception两个流行的CNN架构来进行转移学习。结果表明,尽管架构是在不同的领域进行的训练,但是当智能地选择训练数据时,预训练权值对AD诊断仍然具有很好的泛化能力 由于研究的目标是在小训练集上测试转移学习的鲁棒性,因此仅仅随机选择训练数据可能无法为其提供表示MRI足够结构变化的数据集。所以,他们选择通过图像熵提供最大信息量的训练数据。结果表明,通过智能训练选择和转移学习,可以达到与从无到有以最小参数优化训练深层网络相当甚至更好的性能 方法 CNN的核心是从输入图像中抽取特征的卷积层,卷积层中的每个节点与空间连接的神经元的小子集相连,为了减少计算的复杂性,一个最大池化层会紧随着卷积层,多对卷积层和池化层之后会跟着一个全连接层,全连接层学习由卷积层抽取出来的特征的非线性关系,最后是一个soft-max层,它将输出归一化到期望的水准 因为小的数据集可能会使损失函数陷入local minima,该研究使用转移性学习的方法来尽量规避这种情况,即使用大量相同或不同领域的数据来初始化网络,仅使用训练数据来重新训练最后的全连接层 研究中使用两个流行的架构: VGG16

    04

    医学图像处理最全综述「建议收藏」

    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)、超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图像处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用[1,2]。目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。

    02

    最全综述 | 医学图像处理「建议收藏」

    医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至 定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用[1,2]。目前,医学图像处理主要集中表现在病变检测、图像分割、图像配准及图像融合四个方面。

    01

    基于MRI医学图像的脑肿瘤分级

    本文对近年来脑磁共振(MR)图像分割和肿瘤分级分类技术进行概述。文章强调了早期发现脑肿瘤及其分级的必要性。在磁共振成像(MRI)中,肿瘤可能看起来很清楚,但医生需要对肿瘤区域进行量化,以便进一步治疗。数字图像处理方法和机器学习有助于医生进一步诊断、治疗、手术前后的决策,从而发挥放射科医生和计算机数据处理之间的协同作用。本文旨在回顾以胶质瘤(包括星形细胞瘤)为靶点的肿瘤患者的脑部MR图像分割和分类的最新进展。阐述了用于肿瘤特征提取和分级的方法,这些方法可以整合到标准临床成像协议中。最后,对该技术的现状、未来发展和趋势进行了评估。本文发表在Biomedical Signal Processing and Control杂志。

    03
    领券