首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何设置连接的深度CNN模型的验证数据?

连接的深度CNN模型的验证数据可以通过以下步骤进行设置:

  1. 数据集准备:首先,需要准备好包含验证数据的数据集。这个数据集应该包含与训练数据相似的数据样本,但是与训练数据是独立的。确保数据集中的每个样本都有正确的标签,以便进行模型的验证。
  2. 数据预处理:对验证数据进行与训练数据相同的预处理步骤,例如图像数据的缩放、裁剪、归一化等。确保验证数据的预处理步骤与训练数据一致,以保持一致性。
  3. 数据加载:使用合适的库或框架加载验证数据集。根据使用的编程语言和框架,可以使用不同的函数或类来加载数据集。确保加载的数据集与验证数据的路径和文件格式相匹配。
  4. 模型加载:加载已经训练好的深度CNN模型。根据使用的框架,可以使用相应的函数或类来加载模型。确保模型的结构与训练时的结构完全一致。
  5. 模型验证:使用加载的模型对验证数据进行预测。将验证数据输入到模型中,获取模型的输出结果。可以使用模型的评估指标(如准确率、精确率、召回率等)来评估模型在验证数据上的性能。
  6. 结果分析:分析模型在验证数据上的性能表现。可以查看模型的预测结果与真实标签之间的差异,进一步优化模型的性能。

在腾讯云的产品中,可以使用腾讯云的AI开放平台(https://cloud.tencent.com/product/ai)来构建和部署深度CNN模型。腾讯云提供了丰富的人工智能服务和工具,如腾讯云图像识别、腾讯云自然语言处理等,可以帮助开发者快速构建和验证深度学习模型。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Deep Residual Learning for Image Recognition

更深层次的神经网络更难训练。我们提出了一个残差学习框架来简化网络的训练,这些网络比以前使用的网络要深入得多。我们显式地将层重新表示为参考层输入的学习剩余函数,而不是学习未引用的函数。我们提供了全面的经验证据表明,这些剩余网络更容易优化,并可以从大幅增加的深度获得精度。在ImageNet数据集上,我们评估了高达152层的剩余网—比VGG网[41]深8×,但仍然具有较低的复杂性。这些残差网的集合在ImageNet测试集上的误差达到3.57%,该结果在ILSVRC 2015年分类任务中获得第一名。我们还对CIFAR-10进行了100层和1000层的分析。在许多视觉识别任务中,表征的深度是至关重要的。仅仅由于我们的深度表示,我们获得了28%的相对改进的COCO对象检测数据集。深度残差网是我们参加ILSVRC & COCO 2015竞赛s1的基础,并在ImageNet检测、ImageNet定位、COCO检测、COCO分割等方面获得第一名。

01
  • 深度学习简化总结合注意力与循环神经网络推荐的算法

    互联网将全球信息互连形成了信息时代不可或缺的基础信息平台,其中知识分享服务已经成为人们获取信息的主要工具。为了加快互联网知识共享,出现了大量以知乎为代表的问答社区[1] 。用户注册社区后可交互式提出与回答问题达到知识共享和交换。然而,伴随用户急剧增多,平台短时间内积攒了数目巨大、类型多样的问题,进进超过有效回复数,严重降低了用户服务体验。如何将用户提出的问题有效推荐给可能解答的用户,以及挖掘用户感兴趣的问题是这些平台面临的严重挑战。这种情况下,工业界和学术界对以上问题开展了广泛研究,提出了一些针对问答社区的专家推荐方法提高平台解答效率[2] 。现有工作大多利用基于内容的推荐算法解决该问题[3-6],比如配置文件相似性、主题特征相似性等,匹配效果依赖于人工构建特征的质量。近年来,以卷积神经网络(Convolutional Neural Network, CNN)、Attention 注意力机制为代表的深度学习技术不断収展,幵且已经成功应用到文本挖掘领域。相比于传统方法,深度模型可以学习到表达力更强的深度复杂语义特征。于是,出现了一些深度专家推荐算法,比如DeepFM[7] 、XDeepFM[8] 、CNN-DSSM 等,大大幅提升了传统推荐算法的准确度。虽然以上工作很好地实现了专家推荐,但都是根据用户长期关注的话题及相关解答历史刻画用户兴趣,产生的推荐结果也相对固定。随着时间推移,用户会不断学习新知识,其关注点及擅长解答的问题也很可能収生改变,由此会产生用户兴趣变化,甚至短期兴趣漂移[10] 。这些动态变化会严重影响推荐算法效果,所以如何动态刻画用户兴趣就显得尤为重要。其实,用户历史回答行为具有明显的时间序列关系,通过对已解答问题的序列分析有很大可能感知用户兴趣变化。近年来,循环神经网络(Recurrent Neural Network, RNN)被广泛用来处理序 列 数 据 , 比 如 长 短 期 记 忆 网 络 ( Long Short-Term Memory, LSTM)、门控循环单元(Gate Recurrent Unit, GRU)等,可以根据前面状态输入结合当前模型状态产生当前输出。该类方法可与 CNN结合处理问题内容序列数据,从用户历史解答行为中挖掘长期与短期兴趣,从而动态产生当前兴趣。综合以上讨论,本文提出了结合注意力机制与循环神经网络的问答社区专家推荐算法,能够根据用户历史解答序列动态构建用户兴趣特征,实现推荐结果随时间収展不断调整。 主要工作与贠献如下:(1)基于预训练词嵌入模型分别实现了问题标题与主题标签的语义嵌入向量表示,将 CNN 卷积模型与 Attention 注意力机制结合,构造基于上下文的问题编码器,生成不同距离上下文的深度特征编码。(2)问题编码器对用户历史回答的问题迚行序列编码,利用长短期记忆循环神经网络 Bi-GRU 模型处理编码后的问题序列,幵结合用户主题标签嵌入向量构造用户兴趣动态编码器。(3)将问题与用户编码器产生的深度特征点积运算后加入全连接层实现相似度计算产生推荐结果。在知乎公开数据集上的对比实验结果表明该算法性能要明显优于目前比较流行的深度学习专家推荐算法。

    02

    农林业遥感图像分类研究[通俗易懂]

    遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:

    02

    深度学习在静息态功能磁共振成像中的应用

    对从人脑功能磁共振成像(fMRI)数据中获得的丰富的动态的时空变化特性进行建模是一项具有挑战性的任务。对大脑区域和连接水平进行分析为fMRI数据提供了更直接的生物学解释,并且到目前为止一直有助于描述大脑中的特征。在本文中作者假设,与之前研究广泛使用的预先进行的fMRI时变信息转换以及脑区之间的功能连接特征相比,直接在四维(4D)fMRI体素级别空间中进行时空特征的学习可以增强大脑表征的鉴别性。基于这个目的,作者对最近提出的结构MRI(sMRI)深度学习(DL)方法进行扩展,以额外获得时变信息和在预处理好的fMRI数据上对提出的4D深度学习模型进行训练。结果表明使用基于复杂的非线性函数的深度时空方法为学习任务生成具有鉴别性的编码,使用fMRI体素/脑区/功能连接特征对模型进行验证,发现本文方法的分类性能优于传统标准机器学习(SML)和DL方法,除了相对简单的集中趋势测量的fMRI数据的时间平均值。此外,作者探讨了不同方法识别fMRI特征的优劣,其中对于fMRI体素级别特征DL显著优于SML方法。总之作者的研究结果体现了在fMRI体素级别数据上训练的DL模型的效率和潜力,并强调了开发辅助工具的重要性,以促进对这种灵活模型的解释。本文发表在IEEE Engineering in Medicine & Biology Society (EMBC)

    03

    计算机视觉怎么给图像分类?KNN、SVM、BP神经网络、CNN、迁移学习供你选(附开源代码)

    原文:Medium 作者:Shiyu Mou 来源:机器人圈 本文长度为4600字,建议阅读6分钟 本文为你介绍图像分类的5种技术,总结并归纳算法、实现方式,并进行实验验证。 图像分类问题就是从固定的一组分类中,给输入图像分配标签的任务。这是计算机视觉的核心问题之一,尽管它看似简单,却在实际生活中有着各种各样的应用。 传统方式:功能描述和检测。 也许这种方法对于一些样本任务来说是比较好用的,但实际情况却要复杂得多。 因此,我们将使用机器学习来为每个类别提供许多示例,然后开发学习算法来查看这些示例

    012

    BRAIN:用于阿尔茨海默病分类的可解释深度学习框架的开发和验证

    阿尔茨海默症是全世界痴呆症的主要病因,随着人口老龄化,患病负担不断增加,在未来可能会超出社会的诊断和管理能力。目前的诊断方法结合患者病史、神经心理学检测和MRI来识别可能的病例,然而有效的做法仍然应用不一,缺乏敏感性和特异性。在这里,本文报告了一种可解释的深度学习策略,该策略从MRI、年龄、性别和简易智力状况检查量表(mini-mental state examination ,MMSE) 得分等多模式输入中描绘出独特的阿尔茨海默病特征(signatures)。该框架连接了一个完全卷积网络,该网络从局部大脑结构到多层感知器构建了疾病概率的高分辨率图,并对个体阿尔茨海默病风险进行了精确、直观的可视化,以达到准确诊断的目的。该模型使用临床诊断的阿尔茨海默病患者和认知正常的受试者进行训练,这些受试者来自阿尔茨海默病神经影像学倡议(ADNI)数据集(n = 417),并在三个独立的数据集上进行验证:澳大利亚老龄化影像、生物标志物和生活方式研究(AIBL)(n = 382)、弗雷明汉心脏研究(FHS)(n = 102)和国家阿尔茨海默病协调中心(NACC)(n = 582)。使用多模态输入的模型的性能在各数据集中是一致的,ADNI研究、AIBL、FHS研究和NACC数据集的平均曲线下面积值分别为0.996、0.974、0.876和0.954。此外,本文的方法超过了多机构执业神经科医生团队(n = 11)的诊断性能,通过密切跟踪死后组织病理学的损伤脑组织验证了模型和医生团队的预测结果。该框架提供了一种可适应临床的策略,用于使用常规可用的成像技术(如MRI)来生成用于阿尔茨海默病诊断的细微神经成像特征;以及将深度学习与人类疾病的病理生理过程联系起来的通用方法。本研究发表在BRAIN杂志。

    01

    深度 | 卷积神经网络十五问:CNN与生物视觉系统的研究探索

    和我近期的大多数博文一样,我写这篇文章的起因是近期一个 Twitter 讨论,具体是关于如何将深度卷积神经网络(CNN)的组件与大脑联系起来。但是,这里的大多数思考都是我以前考虑并讨论过的。当有人使用 CNN 作为视觉系统的模型时,我通常(在研究讨论和其它对话上)必须鼓励和支持这一选择。部分原因是它们(在某种程度上)是神经科学领域相对较新的方法,还有部分原因是人们对它们持怀疑态度。计算模型一般在神经科学领域发展较慢,很大部分(但并非全部)是来自不使用或构建计算模型的人;它们通常被描述成不切实际或没有用处。在对技术宅的普遍反感和深度学习/人工智能(会值多少钱?)的过度炒作氛围中,不管你得到了什么模型,某些人都会厌恶它。

    00

    AD分类论文研读(1)

    原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化。该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然图像得到的预训练权重来初始化最先进的VGG和Inception结构,使用少量的MRI图像来重新训练全连接层。采用图像熵选择最翔实的切片训练,通过对OASIS MRI数据集的实验,他们发现,在训练规模比现有技术小近10倍的情况下,他们的性能与现有的基于深层学习的方法相当,甚至更好 介绍 AD的早期诊断可以通过机器学习自动分析MRI图像来实现。从头开始训练一个网络需要大量的资源并且可能结果还不够好,这时候可以选择使用微调一个深度网络来进行转移学习而不是重新训练的方法可能会更好。该研究使用VGG16和Inception两个流行的CNN架构来进行转移学习。结果表明,尽管架构是在不同的领域进行的训练,但是当智能地选择训练数据时,预训练权值对AD诊断仍然具有很好的泛化能力 由于研究的目标是在小训练集上测试转移学习的鲁棒性,因此仅仅随机选择训练数据可能无法为其提供表示MRI足够结构变化的数据集。所以,他们选择通过图像熵提供最大信息量的训练数据。结果表明,通过智能训练选择和转移学习,可以达到与从无到有以最小参数优化训练深层网络相当甚至更好的性能 方法 CNN的核心是从输入图像中抽取特征的卷积层,卷积层中的每个节点与空间连接的神经元的小子集相连,为了减少计算的复杂性,一个最大池化层会紧随着卷积层,多对卷积层和池化层之后会跟着一个全连接层,全连接层学习由卷积层抽取出来的特征的非线性关系,最后是一个soft-max层,它将输出归一化到期望的水准 因为小的数据集可能会使损失函数陷入local minima,该研究使用转移性学习的方法来尽量规避这种情况,即使用大量相同或不同领域的数据来初始化网络,仅使用训练数据来重新训练最后的全连接层 研究中使用两个流行的架构: VGG16

    04

    获奖无数的深度残差学习,清华学霸的又一次No.1 | CVPR2016 最佳论文

    图像识别的深度残差学习————联合编译:李尊,陈圳、章敏 摘要 在现有基础下,想要进一步训练更深层次的神经网络是非常困难的。我们提出了一种减轻网络训练负担的残差学习框架,这种网络比以前使用过的网络本质上层次更深。我们明确地将这层作为输入层相关的学习残差函数,而不是学习未知的函数。同时,我们提供了全面实验数据,这些数据证明残差网络更容易优化,并且可以从深度增加中大大提高精度。我们在ImageNet数据集用152 层--比VGG网络深8倍的深度来评估残差网络,但它仍具有较低的复杂度。在ImageNet测试集中,

    012

    一个有效的图表图像数据提取框架

    在本文中,作者通过采用最先进的计算机视觉技术,在数据挖掘系统的数据提取阶段,填补了研究的空白。如图1所示,该阶段包含两个子任务,即绘制元素检测和数据转换。为了建立一个鲁棒的Box detector,作者综合比较了不同的基于深度学习的方法,并找到了一种合适的高精度的边框检测方法。为了建立鲁棒point detector,采用了带有特征融合模块的全卷积网络,与传统方法相比,可以区分近点。该系统可以有效地处理各种图表数据,而不需要做出启发式的假设。在数据转换方面,作者将检测到的元素转换为具有语义值的数据。提出了一种网络来测量图例匹配阶段图例和检测元素之间的特征相似性。此外,作者还提供了一个关于从信息图表中获取原始表格的baseline,并发现了一些关键的因素来提高各个阶段的性能。实验结果证明了该系统的有效性。

    04
    领券