对转换(Transformations)操作而言,消除数据的气候平均是一个很好的例子。转换操作对分组的对象进行操作,但不改变原数据的维度尺寸。...xarray 通过使用Groupby 算法使这些类型的转换变得容易。下面给出了计算去除月份温度差异的海温月数据。...2018年1月1日与1960年1月1日之间SST之间的差异 Resample(重采样) xarray 中的Resample(重采样)的处理方法与 Pandas 包几乎相同。...resample(time="5Y")是对如何对时间进行重采样进行设置,维度为time,设置的时间间隔为 5 年。...5年滑动平均 我们可以通过下图来理解时间窗是如何操作数据的 ?
# 执行函数输出结果 gini() # 结果为 0.3109641735512392 画出来的图: 方法二: 近似的求上图中的面积,将其分割成多个梯形,通过近似计算多个梯形面积,将其加和得到蓝色线条线条下面的面积...,表示这个位置原来的值属于1到n的哪个组 y = m.groupby(by = m).size().cumsum() # 得到每个分组中的最后一个数的位置在哪里 # size表示每个组里面有多少个元素...但可能有助于对基尼系数近似计算的理解,所以放在了这里。 方法三 样本数量能够被分组数均匀分配的情况(仅适用于这个情况),更好的方法详见方法二。 数据的精确度可能还会受样本量和分组量的关系。...本文中采用的100个样本和分成100/20/50都是可均匀分配的情况。如果不能均匀分配,可能取m的方式需要优化,应该采取python内含的最大力度均匀分组的函数。...# 第二个方法 #只适用于样本数量能够被分组数量整除的情况 # 接着上面的定义 n = 100 #分成100个组,100个数据分成100个组,每个点和点之间的梯形都计算其面积,‘最精确的近似‘ m =
所涉及Python库有 wget , matplotlib , numpy ,xarray , pytorch 等一系列在深度学习以及气象数据处理中经常使用的函数库,希望这篇文章能够对大家有所帮助。...数据下载与预处理 由于神经网络预训练数据需要cmip模式数据,训练、验证时需要观测数据,因此我们首先对需要数据进行下载。...我们根据上述规律,使用wget就可以很简单的下载数据了。 接下来是处理CMIP数据,为了统一语言,我使用python中的xarray来处理、merge文件。缺点是很慢,优点是易学。...下面的脚本中,merge nc文件的主要函数是concat,需要输入一系列网格相同的Dataarray,然后在time维度上进行统一。非常建议统一时间,以免后期出幺蛾子。.../ersstv5D" fList = os.listdir(fileLoc) # 对下载的nc文件进行合并 ncList = [] for FileName in fList: nc = xr.open_dataset
所涉及Python库有 wget , matplotlib , numpy ,xarray , pytorch 等一系列在深度学习以及气象数据处理中经常使用的函数库,希望这篇文章能够对大家有所帮助。...数据下载与预处理 由于神经网络预训练数据需要cmip模式数据,训练、验证时需要观测数据,因此我们首先对需要数据进行下载。 ?...我们根据上述规律,使用wget就可以很简单的下载数据了。 接下来是处理CMIP数据,为了统一语言,我使用python中的xarray来处理、merge文件。缺点是很慢,优点是易学。...下面的脚本中,merge nc文件的主要函数是concat,需要输入一系列网格相同的Dataarray,然后在time维度上进行统一。非常建议统一时间,以免后期出幺蛾子。.../ersstv5D" fList = os.listdir(fileLoc) # 对下载的nc文件进行合并 ncList = [] for FileName in fList: nc = xr.open_dataset
本文,我借鉴 Richard 的分析思路,换成用 Python 和数据分析包 Pandas 对该数据集进行分析和可视化。希望通过这个例子,让你了解开放数据的获取、整理、分析和可视化。...注意最后多出来的一列,确实已经变成了我们希望转换的形式。 依然按照前面的方法,我们分组统计每一条街道上的犯罪数量,并且进行排序。...从上图中,可以看到,从 2010 到 2018 年,10月和12月犯罪数量较多,2月和7月相对好一些。 但是,我们可能更加关心近年的情况。...于是 Pandas 就会按照列表中指定的顺序,先按照月份分组,再按照小时分组。...小结 通过本文的学习,希望你已掌握了以下内容: 如何检索、浏览和获取开放数据; 如何用 Python 和 Pandas 做数据分类统计; 如何在 Pandas 中做数据变换,以及缺失值补充; 如何用 Pandas
数据分类汇总与统计 前言 数据分类汇总与统计是指将大量的数据按照不同的分类方式进行整理和归纳,然后对这些数据进行统计分析,以便于更好地了解数据的特点和规律。...换句话说,该对象已经有了接下来对各分组执行运算所需的一切信息。groupby对象不能直接打印输出,可以调用list函数显示分组,还可以对这个对象进行各种计算。...和agg函数对该数据表进行分组聚合操作。...Apply函数会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。 【例13】采用之前的小费数据集,根据分组选出最高的5个tip-pct值。...关键技术:假设你需要对不同的分组填充不同的值。可以将数据分组,并使用apply和一个能够对各数据块调用fillna的函数即可。
分组:分割,应用和组合 简单的聚合可以为你提供数据集的风格,但我们通常更愿意在某些标签或索引上有条件地聚合:这是在所谓的groupby操作中实现的。...分割,应用和组合 这是分割-应用-组合操作的规则示例,其中“应用”是汇总聚合,如下图所示: 这清楚地表明groupby完成了什么: “分割”步骤涉及根据指定键的值打破和分组DataFrame。...与GroupBy对象一样,在我们调用对象上的聚合之前,不会进行任何计算: planets.groupby('method')['orbital_period'].median() ''' method...特别是GroupBy对象有aggregate(),filter(),transform()和apply()方法,在组合分组数据之前,它们有效实现各种实用操作。...我们立即大致了解,过去几十年内行星何时以及如何被发现! 在这里,我建议深入研究这几行代码,并评估各个步骤,来确保你准确了解它们对结果的作用。
利用 pandas 和 xarray 整理气象站点数据 平时用 xarray 库在处理 nc 格式的数据非常方便,但偶尔还是要用到一些站点数据来辅助分析,而站点数据一般都是用文本文件存储的,比如下图这种格式...,从外到内的坐标依次是:年、月、站点、日 ?...用Python处理这种文本列表就需要用上 pandas 库了, xarray 库就是基于 pandas 的,虽然天天在用 xarray ,但是这还是第一次正儿八经用 pandas 处理数据,就当做一次学习的过程啦...plt 定义处理过程中的函数: 处理时间坐标,利用 datetime 将整形的年、月、日转换为 pandas 的时间戳 def YMD_todatetime(ds): # 读取年月日数据,转换为...三、 数据处理实例 1. 2012年夏季平均气温的空间分布 此例所用数据即上面生成的数据 ds = xr.open_dataset('Station_test.nc') temp = ds['temp'
之前介绍过索引操作,现在接着对Pandas中的分组操作进行介绍:主要包含SAC含义、groupby函数、聚合、过滤和变换、apply函数。...其中split指基于某一些规则,将数据拆成若干组;apply是指对每一组独立地使用函数;combine指将每一组的结果组合成某一类数据结构。...2. groupby对象的特点: 查看所有可调用的方法 分组对象的head 和first 分组依据 groupby的[]操作 连续型变量分组 a)....分组依据 对于groupby函数而言,分组的依据是非常自由的,只要是与数据框长度相同的列表即可,同时支持函数型分组。...变换(Transformation):即分组对每个单元的数据进行操作(如元素标准化):输入的是每组数据,输出是每组数据经过某种规则变换后的数据,不改变数据的维度。
时间序列处理2 在前面一个章节,我们学习了常用的时间序列的生成方法,这一节,则是非常方便的如何使用xarray进行数据集的时间维度的抽取合并操作。...这一章的框架是按照xarray提供的不同的数据抽取方式,逐项讲解xarray下的时间序列的抽取,在最后,还会涉及一些不同数据集按照时间维进行合并的方法。...提取1955年1月到1966年12月,1988年1月到1988年6月,1999年5月到2001年1月的数据,我们就可以在一条命令中实现。...,我们要求仅返回11、12月的数据,又怎么进行呢,显然切片法解决不了,下面引入xarray继承pandas的isin方法。...如何对数据进行操作 上面对时间序列的处理,都是讲明原理,仅仅对时间序列进行操作,下面我们将对air进行相关操作。
二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...主要可以进行以下几种操作: 直接调用聚合函数 譬如这里我们提取count列后直接调用max()方法: #求每个分组中最高频次 data.groupby(by=['year','gender'])['count
三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。...主要可以进行以下几种操作: 直接调用聚合函数 譬如这里我们提取count列后直接调用max()方法: #求每个分组中最高频次 data.groupby(by=['year','gender'])['count
作者:石异 (南京大学大气科学学院,硕士生) 利用 pandas 和 xarray 整理气象站点数据 平时用 xarray 库在处理 nc 格式的数据非常方便,但偶尔还是要用到一些站点数据来辅助分析,而站点数据一般都是用文本文件存储的...,比如下图这种格式,从外到内的坐标依次是:年、月、站点、日 这种格式与CSV格式还有点不同,CSV格式是字段间用相同的符号隔开,而图中的文件可能是用 Fortran 写的,每个字段的长度固定为30个字符...用Python处理这种文本列表就需要用上 pandas 库了, xarray 库就是基于 pandas 的,虽然天天在用 xarray ,但是这还是第一次正儿八经用 pandas 处理数据,就当做一次学习的过程啦...plt 定义处理过程中的函数: 处理时间坐标,利用 datetime 将整形的年、月、日转换为 pandas 的时间戳 def YMD_todatetime(ds): # 读取年月日数据,转换为...三、 数据处理实例 1. 2012年夏季平均气温的空间分布 此例所用数据即上面生成的数据 ds = xr.open_dataset('Station_test.nc') temp = ds['temp'
数据分组就是根据一个或多个键(可以是函数、数组或df列名)将数据分成若干组,然后对分组后的数据分别进行汇总计算,并将汇总计算后的结果合并,被用作汇总计算的函数称为就聚合函数。...1.分组键是列名 分组键是列名时直接将某一列或多列的列名传给 groupby() 方法,groupby() 方法就会按照这一列或多列进行分组。...df.groupby(["客户分类","区域"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 无论分组键是一列还是多列,只要直接在分组后的数据进行汇总运算,就是对所有可以计算的列进行计算...) #对分组后数据进行求和运算 df.groupby(df["客户分类"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 (2)按照多个Series进行分组 #以 客户分类...("客户分类") #分组键是列名 df.groupby(df["客户分类"]) #分组键是Series #对分组后的数据进行 计数运算 和 求和运算 df.groupby("客户分类").
三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果,主要可以进行以下几种操作: ●...直接调用聚合函数 譬如这里我们提取count列后直接调用max()方法: #求每个分组中最高频次 data.groupby(by=['year','gender'])['count'].max()
分和合按照字面理解就可,但是“治”又是怎么理解,进一步将治分为3件事: 聚合操作,比如统计每组的个数,总和,平均值 转换操作,对每个组进行标准化,依据其他组队个别组的NaN值填充 过滤操作,忽略一些组...04 分(splitting) 分组就是根据默认的索引映射为不同索引取值的分组名称,来看如下所示的DataFrame实例df_data,可以按照多种方式对它分组,直接调用groupby接口, ?...df_data.groupby('A') 默认是按照axis=0分组的(行),如果按照列,修改轴,即 df_data.groupby('A' , axis=1) 也可以按照多个列分组,比如: df_data.groupby...如果根据两个字段的组合进行分组,如下所示,为对应分组的总和, abgroup = df.groupby(['A','B']) abgroup.aggregate(np.sum) ?...还可以对不同的列调用不同的函数,详细过程在参考官方文档: http://pandas.pydata.org/pandas-docs/stable/groupby.html 还可以进行一些转化和过滤操作,
以下文章来源于MeteoAI ,作者学前班大队长 前面有关xarray已经讲了3期了,介绍了数据索引,数据结构还有插值和掩膜。...今天这是最后一期介绍用xarray处理nc数据了,打算聊一下如何做数据合并与计算。 数据合并 数据合并主要是两种形式 维度的拼接:如将日数据合成为年数据,就属于在时间维度上的合并。...我在这里就挑最常用的跟大家聊聊。 维度拼接 使用 concat() 方法可以实现维度的拼接。 下面是演示数据,来源于2018年和2019年前三个月的ERA-Interim月平均数据。...和ds2019中的t2m合并到一起,而且在时间维上缺失会自动设置为nan。...除此以外,xarray还可以帮你快速地求出平均值,方差,最小值,最大值等。你可以指定具体对那个维度进行计算,如果不指定维度默认会对所有维度进行计算。
2024年初,JavaScript(也称为Ecma Script)推出了一项全新的内置函数——object.groupBy()。这一创新功能将彻底改变我们对数据进行分组和组织的方式!...什么是object.groupBy()? 复杂定义: object.groupBy()是一个静态方法,允许你基于提供的回调函数对可迭代对象(如数组)中的元素进行分组。...通过调用Object.groupBy(inventory, ({ type }) => type),我们根据食物的type属性对元素进行分组,并得到一个按类别(蔬菜、水果、肉类)组织的对象,每个类别都包含一个对应项目的数组...通过使用回调函数({ grade, subject }) => {subject}``,我们根据年级和科目的组合对学生进行分组,结果是一个表示每个唯一组合的对象,每个组合包含相应学生的数组。...通过一些创造力和巧妙的回调函数,你可以实现更多功能。想象一下,基于复杂计算、正则表达式甚至外部数据源对数据进行分组——可能性是无穷无尽的!
groupby 是pandas 中非常重要的一个函数, 主要用于数据聚合和分类计算. 其思想是“split-apply-combine”(拆分 - 应用 - 合并)....拆分:groupby,按照某个属性column分组,得到的是一个分组之后的对象 应用:对上面的对象使用某个函数,可以是自带的也可以是自己写的函数,通过apply(function) 合并:最终结果是个S...(需要按照职业进行分组)并按照平均年龄从大到小排序?(分组之后对年龄求平均再排序) 分别找出男人和女人每种职业的人数?(按照男女分组) 更进一步, 如何找出男人和女人在不同职业的平均年龄?...(先按男女分组,再按照不同职业分组,再求平均年龄) ---- 问题1 : 如何找出每一种职业的平均年龄?并按照平均年龄从大到小排序?...对两个属性同时进行分组 再进行size函数求和 df.groupby(['occupation','gender']).size() # Output occupation gender administrator
我们已经看到GroupBy抽象如何让我们探索数据集中的关系。透视表是一种类似的操作,常见于电子表格,和其他操作表格数据的程序中。...透视表将简单的逐列数据作为输入,并将条目分组为二维表格,该表提供数据的多维汇总。 数据透视表和GroupBy之间的区别有时会引起混淆;它帮助我将透视表视为GroupBy聚合的多维版本。...手动创建透视表 为了开始更加了解这些数据,我们可以根据性别,生存状态或其某些组合进行分组。...使用GroupBy的词汇表,我们可以继续执行这样的过程:我们分组舱位和性别,选择生存列,应用平均聚合,组合生成的分组,然后对分层索引取消堆叠,来揭示隐藏的多维度。...让我们添加decade列,并看看男性和女性的出生对于十年的函数: births['decade'] = 10 * (births['year'] // 10) births.pivot_table('births
领取专属 10元无门槛券
手把手带您无忧上云