首页
学习
活动
专区
圈层
工具
发布

在一个df里,怎么根据两列去把另外两列合并呢?

一、前言 前几天在Python最强王者交流群【群除我佬】问了一个Pandas处理的问题,提问截图如下: 预期结果如下所示: 二、实现过程 这个需求看上去还挺难理解的,需要多读几遍才行。...这里他给了一个可行的代码,如下所示: df.groupby(by=["song_name","actor_name"],sort=False)[["tblTags","song_id"]].sum()...后来【隔壁山楂】建议先加逗号,合并后再strip掉两端的逗号,这个方法最简单,也快。后来还提供了一个代码,真的太强了!...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【群除我佬】提问,感谢【黑科技·鼓包】、【隔壁山楂】给出的思路和代码解析,感谢【Python进阶者】、【Python狗】等人参与学习交流

2K30

合并excel的两列,为空的单元格被另一列有值的替换?

一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两列,为空的单元格被另一列有值的替换。...【Siris】:你是说c列是a列和b列的内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里用CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...pandas里两列不挨着也可以用bfill。 【瑜亮老师】:@逆光 给出两个方法,还有其他的解决方法,就不一一展示了。 【逆光】:报错,我是这样写的。...请大神帮我瞅瞅,我打印出来有这3列啊 【瑜亮老师】:初步看了一下你这里多了.loc 【逆光】:刚开始我没写,报错信息推荐我写 【瑜亮老师】:还有就是你后面,你是想让这三列分别是无忧,0和0对吧 【逆光】...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单的思路是分成3行代码。就是你要给哪一列全部赋值为相同的值,就写df['列名'] = '值'。不要加方括号,如果是数字,就不要加引号。

2.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    若A有一行或者一列的元素全为0,则det(A)=0若A有两行或者两列相等,则det(A)=0

    定理2.1.4令A为n*n矩阵,若A有一行或者一列的元素全为0,则det(A)=0若A有两行或者两列相等,则det(A)=0若A有一行是另外一行的倍数,或者一列是另一列的倍数,则det(A)=0什么叫矩阵的秩...秩就是矩阵中行向量组或列向量组线性无关的个数。什么是行,列向量组?把矩阵的一行或者列看成一个向量,向量是什么?在二维平面的,就是X,Y的方向。从原点指向点x,y射线的方向。...若A有一行或者一列为的元素全为0,则det(A)=0按行列式展开公式,一行的元素全0,相乘任何数都是0,所有行列式等于0.若A有一行是另外一行的倍数,或者一列是另一列的倍数,则det(A)=0若两行两列相等...,或者倍数,行列式交换两行两列,行列式的值要变号。...如果值不变,那么只能说明这个矩阵的行列式为0.

    21110

    Excel中两列(表)数据对比的常用方法

    Excel中两列数据的差异对比,方法非常多,比如简单的直接用等式处理,到使用Excel2016的新功能Power Query(Excel2010或Excel2013可到微软官方下载相应的插件...vlookup函数除了适用于两列对比,还可以用于表间的数据对比,如下图所示: 三、使用数据透视进行数据对比 对于大规模的数据对比来说,数据透视法非常好用,具体使用方法也很简单,即将2列数据合并后...,构造成明细表,然后进行数据透视——这种方法适用于多表数据对比,甚至可以在一些数据不太规范的场合下,减少数据对比的工作量,如下例子: 表间数据不规范统一,用数据透视递进巧比对 比如很多公司的盘点数据对比问题...继续对细类筛选比对: 最后对细类进行比对,就双击生成明细: 结果如下图所示: 新建窗口并重排后进行核对: 在垂直并排的窗口中分别进行对比即可: 四、用Power Query...1、将需要对比的2个表的数据加载到Power Query 2、以完全外部的方式合并查询 3、展开合并的数据 4、添加差异比对列 5、按需要筛选去掉无差异部分 6、按需要调整相应的列就可以将差异结果返回

    37.8K20

    【说站】excel筛选两列数据中的重复数据并排序

    如果靠人眼来一个个的对比excel的两列数据来去重的话,数据量少还能勉强对比一下,如果几千、几万条数据肯定就需要进行程式化处理,excel对于这个问题给我们提供了很方便的解决方案,这里主要用到excel...的“条件格式”这个功能来筛选对比两列数据中心的重复值,并将两列数据中的相同、重复的数据按规则进行排序方便选择,甚至是删除。...比如上图的F、G两列数据,我们肉眼观察的话两列数据有好几个相同的数据,如果要将这两列数据中重复的数据筛选出来的话,我们可以进行如下操作: 第一步、选择重复值 1、将这两列数据选中,用鼠标框选即可; 2...、单击菜单栏的“条件格式”》“突出显示单元格规则”》“重复值”; 3、在弹出窗口按照如下设置,“重复”值(这个按照默认设置即可),设置为“浅红填充色深红色文本”(这个是筛选出来的重复值的显示方式,根据需要进行设置...2、选中G列,做上述同样的排序设置,最后排序好的结果如下图: 经过上面的几个步骤,我们可以看到本来杂乱无章的两列数据现在就一目了然了,两列数据中的重复数据进行了颜色区分排列到了上面,不相同的数据也按照一定的顺序进行了排列

    21.7K20

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...下面我们来逐行分析代码的具体实现: import numpy as np import pandas as pd 这两行代码导入了 numpy 和 pandas 库。...data = {'label': [1, 2, 3, 4]} df = pd.DataFrame(data) 这两行代码创建了一个包含单列数据的 DataFrame。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    4.8K00

    盘点使用Pandas解决问题:对比两列数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们的解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...长城】解答 这个方法也是才哥群里的一个大佬给的思路。...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    5.2K30

    合并列,在【转换】和【添加列】菜单中的功能竟有本质上的差别!

    有很多功能,同时在【转换】和【添加】两个菜单中都存在,而且,通常来说,它们得到的结果列是一样的,只是在【转换】菜单中的功能会将原有列直接“转换”为新的列,原有列消失;而在【添加】菜单中的功能,则是在保留原有列的基础上...但是,最近竟然发现,“合并列”的功能,虽然在大多数情况下,两种操作得到的结果一致,但是他们却是有本质差别的,而且一旦存在空值(null)的情况,得到的结果将有很大差别。...比如下面这份数据: 将“产品1~产品4”合并到一起,通过添加列的方式实现: 结果如下,其中的空值直接被忽略掉了: 而通过转换合并列的方式: 结果如下,空的内容并没有被忽略,所以中间看到很多个连续分号的存在...那么问题来了,如果希望转换的时候直接忽略空值进行合并呢?...显然,我们只要将其所使用的函数改一下就OK了,比如转换操作生成的步骤公式修改如下: 同样的,如果希望添加列里,内容合并时保留null值,则可以进行如下修改: 这个例子,再次说明,绝大多数的时候,我们只需要对操作生成的步骤公式进行简单的调整

    3.7K30

    在excel表格插入标黄的这列数据 实现合并单元格,并统计单元格个数?

    今 日 鸡 汤 若无兴德之言,则责攸之、祎、允等之慢,以彰其咎; 大家好,我是皮皮。...一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Python自动化办公的问题,一起来看看吧。...下图是他的原始数据和他想得到的目标数据,如下所示: 需要在标黄的两行里边进行相关操作。...后来【瑜亮老师】又给了一个思路,如下所示: 后来【郑煜哲·Xiaopang】也给了一个思路,如下所示: 顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Python自动化办公的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    71830

    arcengine+c# 修改存储在文件地理数据库中的ITable类型的表格中的某一列数据,逐行修改。更新属性表、修改属性表某列的值。

    作为一只菜鸟,研究了一个上午+一个下午,才把属性表的更新修改搞了出来,记录一下: 我的需求是: 已经在文件地理数据库中存放了一个ITable类型的表(不是要素类FeatureClass),注意不是要素类...FeatureClass的属性表,而是单独的一个ITable类型的表格,现在要读取其中的某一列,并统一修改这一列的值。...表在ArcCatalog中打开目录如下图所示: ? ?...string strValue = row.get_Value(fieldindex).ToString();//获取每一行当前要修改的属性值 string newValue...= "X";//新值,可以根据需求更改,比如字符串部分拼接等。

    12K30

    直观地解释和可视化每个复杂的DataFrame操作

    初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。这意味着Pivot无法处理重复的值。 ? 旋转名为df 的DataFrame的代码 如下: ?...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...另一方面,如果一个键在同一DataFrame中列出两次,则在合并表中将列出同一键的每个值组合。...例如,如果 df1 具有3个键foo 值, 而 df2 具有2个相同键的值,则 在最终DataFrame中将有6个条目,其中 leftkey = foo 和 rightkey = foo。 ?...“inner”:仅包含元件的键是存在于两个数据帧键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。

    16.2K20

    Pandas 的Merge函数详解

    如果两个列的名称都存在于两个DataFrame中,则可以使用参数on。...但是如果两个DataFrame都包含两个或多个具有相同名称的列,则这个参数就很重要。 我们来创建一个包含两个相似列的数据。...让我们看看如果使用默认方法合并两个DataFrame会发生什么。 pd.merge(customer, order) 只剩下一行了,这是因为merge函数将使用与键名相同的所有列来合并两个数据集。...合并类型介绍 默认情况下,当我们合并数据集时,merge函数将执行Inner Join。在Inner Join中,根据键之间的交集选择行。匹配在两个键列或索引中找到的相同值。...如果在正确的DataFrame中有多个重复的键,则只有最后一行用于合并过程。例如将更改delivery_date数据,使其具有多个不同产品的“2014-07-06”值。

    99630

    「mysql优化专题」你们要的多表查询优化来啦!请查收(4)

    如果还有第三个参与Join,则再通过前两个表的Join 结果集作为循环基础数据,再一次通过循环查询条件到第三个表中查询数据,如此往复。...union查询:它可以把需要使用临时表的两条或更多的select查询合并的一个查询中(即把两次或多次查询结果合并起来。)。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。...如果不同的语句中取出的行,有完全相同(这里表示的是每个列的值都相同),那么union会将相同的行合并,最终只保留一行。也可以这样理解,union会去掉重复的行。...同时,每条 SELECT 语句中的列的顺序必须相同 UNION ALL的作用和语法: 默认地,UNION 操作符选取不同的值。如果允许重复的值,请使用 UNION ALL。...可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num = 0 (3)in 和 not in 也要慎用,否则会导致全表扫描,如:

    2.2K20

    Pandas知识点-合并操作merge

    如果两个DataFrame的列名完全相同,使用outer合并方式,效果是将两个DataFrame按行合并到一起。...默认为None,merge()方法自动识别两个DataFrame中名字相同的列,作为连接的列,如本文前面的例子中没有指定on参数,也自动识别了相同的列作为连接列。...合并时,先找到两个DataFrame中的连接列key,然后将第一个DataFrame中key列的每个值依次与第二个DataFrame中的key列进行匹配,匹配到一次结果中就会有一行数据。...on参数指定的列必须在两个被合并DataFrame中都有,否则会报错。 on参数也可以指定多列,合并时按多个列进行连接。 ? 在合并时,只有多个列的值同时相等,两个DataFrame才会匹配上。...在新增的列中,如果连接列同时存在于两个DataFrame中,则对应的值为both,如果连接列只存在其中一个DataFrame中,则对应的值为left_only或right_only。

    5.3K30

    Pandas知识点-合并操作combine

    combine_first()方法根据DataFrame的行索引和列索引,对比两个DataFrame中相同位置的数据,优先取非空的数据进行合并。...如果调用combine_first()方法的df1中数据非空,则结果保留df1中的数据,如果df1中的数据为空值且传入combine_first()方法的df2中数据非空,则结果取df2中的数据,如果df1...func函数的入参是两个Series,分别来自两个DataFrame(将DataFrame按列遍历),返回结果是一个合并之后的Series,在函数中实现合并的规则。...fmax()是numpy中实现的函数,用于比较两个数组,返回一个新的数组。返回两个数组中相同索引的最大值,如果其中一个数组的值为空则返回非空的值,如果两个数组的值都为空则返回第一个数组的空值。...overwrite: 如果调用combine()方法的DataFrame中存在的列,在传入combine()方法的DataFrame中不存在,则先在传入的DataFrame中添加一列空值。

    2.2K10
    领券