首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据分析作业二:Pandas库的使用

其中,Series 和 DataFrame 是 Pandas 中最常用的两个对象,分别对应于一维和二维数据的处理(Pandas 还有对三维甚至多维数据处理的 Panel 对象,但不太常用)。...-03-01') & (df['日期']<='2019-03-15')]['交易额'].sum() 使用.loc方法基于日期列的值在 ‘2019-03-01’ 和 ‘2019-03-15’ 之间的条件,...然后,它从这些行中的 “交易额” 列中提取数值,并使用.sum()方法计算这些值的总和。...最后,将结果存储在新的 Series 对象dff中。dff是一个包含每个姓名对应的平均交易额的 Series,其中索引是姓名,值是平均交易额。...最后,使用groupby方法将合并后的 DataFrame 按照 “姓名” 和 “职级” 进行分组,并计算每个组中 “交易额” 列的总和。

10200

使用R或者Python编程语言完成Excel的基础操作

使用查找和替换:按Ctrl+F或Ctrl+H,进行查找和替换操作。 4. 查询数据 使用公式:在单元格中输入公式进行计算。 查找特定数据:按Ctrl+F打开查找窗口,输入要查找的内容。 5....以下是一些其他的操作: 数据分析工具 数据透视表:对大量数据进行快速汇总和分析。 数据透视图:将数据透视表的数据以图表形式展示。 条件格式 数据条:根据单元格的值显示条形图。...色阶:根据单元格的值变化显示颜色的深浅。 图标集:在单元格中显示图标,以直观地表示数据的大小。 公式和函数 数组公式:对一系列数据进行复杂的计算。...目标 找出每个商店每月的总销售额,并按商店和日期排序。...目标 找出每个商店每月的总销售额,并按商店和日期排序。

23810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python pandas十分钟教程

    import pandas as pd pandas在默认情况下,如果数据集中有很多列,则并非所有列都会显示在输出显示中。...如果读取的文件没有列名,需要在程序中设置header,举例如下: pd.read_csv("Soils.csv",header=None) 如果碰巧数据集中有日期时间类型的列,那么就需要在括号内设置参数...例如,如果数据集中有一个名为Collection_Date的日期列,则读取代码如下: pd.read_excel("Soils.xls", parse_dates = ['Collection_Date...统计某列数据信息 以下是一些用来查看数据某一列信息的几个函数: df['Contour'].value_counts() : 返回计算列中每个值出现次数。...Pandas中提供以下几种方式对数据进行分组。 下面的示例按“Contour”列对数据进行分组,并计算“Ca”列中记录的平均值,总和或计数。

    9.8K50

    Zipline 3.0 中文文档(二)

    symbol_column (str) – 如果数据正在为每个资产附加一些新属性,则此参数是包含符号的预处理数据框中的列的名称。这将连同日期信息一起用于映射资产查找器中的 sids。...&两个过滤器组合产生一个新的过滤器,如果两个输入都产生 True,则新过滤器产生 True。 |两个过滤器组合产生一个新的过滤器,如果任何一个输入产生 True,则新过滤器产生 True。...日期被解释为自 1970 年 1 月 1 日 UTC 午夜以来的秒数。 标识符是行的资产标识符。 每个列中的数据按资产分组,然后在每个资产块内按日期排序。...如果给定的日期和 sid 在股票的日期范围之前或之后,则引发 NoDataOnDate 异常。如果日期在日期范围内,但价格为 0,则返回-1。...这将连同日期信息一起用于在资产查找器中映射 sid。 国家代码 (str, 可选) – 用于消除符号查找歧义的国家代码。

    23810

    3 个不常见但非常实用的Pandas 使用技巧

    在本文中,将演示一些不常见,但是却非常有用的 Pandas 函数。 创建一个示例 DataFrame 。...date 列包含 100 个连续日期,class 列包含 4 个以对象数据类型存储的不同值,amount 列包含 10 到 100 之间的随机整数。...1、To_period 在 Pandas 中,操 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类·的累积总和列包含为每个类单独计算的累积值总和。 3、Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。

    1.8K30

    3 个不常见但非常实用的Pandas 使用技巧

    date 列包含 100 个连续日期,class 列包含 4 个以对象数据类型存储的不同值,amount 列包含 10 到 100 之间的随机整数。 1....To_period 在 Pandas 中,操作 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类的累积总和列包含为每个类单独计算的累积值总和。 3. Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。

    1.3K10

    panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

    参考链接: Python | 使用Panda合并,联接和连接DataFrame 本文转载自公众号“读芯术”(ID:AI_Discovery)  大家都知道Pandas和NumPy函数很棒,它们在日常分析中起着重要的作用...1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组的项在公差范围内不相等,则返回False。...有时,需要将值保持在上限和下限之间。因此,可以使用NumPy的clip()函数。给定一个间隔,该间隔以外的值都将被裁剪到间隔边缘。  ...它返回在特定条件下值的索引位置。这差不多类似于在SQL中使用的where语句。请看以下示例中的演示。  ...1. apply()  Apply() 函数允许用户传递函数并将其应用于Pandas序列中每个单一值。

    5.1K00

    手把手 | 数据科学速成课:给Python新手的实操指南

    例如,我们需要为会话数据集中的每个用户找到其首次活动的数据(如果有的话)。这就要求在user_id上加入两个数据集,并删除首次活动后的其他所有活动数据。...本着学习的原则,我们建议您自己找出如何读取这两个数据集。最后,你应该建立两个独立的DataFrames,每个数据集都需要有一个。 小贴士:在这两个文件中,我们都有不同的分隔符。...因此,我们在Dataframes上应用索引和选择只保留相关的列,比如user_id(必需加入这两个DataFrames),每个会话和活动的日期(在此之前搜索首次活动和会话)以及页面访问量(假设验证的必要条件...另外,我们会筛选出DataFrame中所有非首次的活动。可以通过查找每个user_id的最早日期来完成。具体怎样做呢?使用GroupBy:split-apply-combine逻辑!...同样,使用GroupBy:split-apply-combine逻辑,我们可以创建一个包含观察值的新列,如果它是用户的最后一个会话,观察值将为1,否则为0。

    1.2K50

    Pandas 秘籍:6~11

    索引支持重复值,并且如果在任何索引中碰巧有重复项,则哈希表将无法再用于其实现,并且对象访问会变得很慢。...如果max_dept_sal在其索引中重复了任何部门,则该操作将失败。 例如,让我们看看当我们在具有重复索引值的等式的右侧使用数据帧时会发生什么。...如果没有重复的值,则分组将毫无意义,因为每个组只有一行。 连续数字列通常具有很少的重复值,并且通常不用于形成组。...它通过将value_vars参数保留为其默认值None来执行此操作。 如果未指定,则id_vars参数中不存在的所有列都将转置。...最典型地,时间在每个数据点之间平均间隔。 Pandas 在处理日期,在不同时间段内进行汇总,对不同时间段进行采样等方面具有出色的功能。

    34K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...日期功能 本节将提到“日期”,但时间戳的处理方式类似。 我们可以将日期功能分为两部分:解析和输出。在Excel电子表格中,日期值通常会自动解析,但如果您需要,还有一个 DATEVALUE 函数。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1....填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。

    19.6K20

    Pandas 学习手册中文第二版:11~15

    具体而言,在本章中,我们将研究以下概念: 连接多个 Pandas 对象中的数据 合并多个 Pandas 对象中的数据 如何控制合并中使用的连接类型 在值和索引之间转换数据 堆叠和解除堆叠数据 在宽和长格式之间融合数据...如果结果中的列在当前正在处理的DataFrame对象中不存在,则 Pandas 将插入NaN值。...合并通过在一个或多个列或行索引中查找匹配值来合并两个 Pandas 对象的数据。 然后,基于应用于这些值的类似关系数据库的连接语义,它返回一个新对象,该对象代表来自两者的数据的组合。...合并来自多个 Pandas 对象的数据 合并的一个实际示例是从订单中查找客户名称。 为了在 Pandas 中证明这一点,我们将使用以下两个DataFrame对象。...值未更改,因为重新采样仅选择了月底的日期,或者如果源中不存在该日期之前的值,则使用该日期之前的值进行填充。

    3.4K20

    JavaScript笔记

    replace() 方法用另一个值替换在字符串中指定的值: 通过 toUpperCase() 把字符串转换为大写 通过 toLowerCase() 把字符串转换为小写 concat() 连接两个或多个字符串...isNaN() 函数用于检查其参数是否是非数字值。如果参数值为 NaN 或字符串、对象、undefined等非数字值则返回 true, 否则返回 false。...Math.max.apply 来查找数组中的最高值: Math.min.apply 来查找数组中的最低值 数组迭代 Array.forEach() 方法为每个数组元素调用一次函数(回调函数) Array.map...)的正弦(介于 -1 与 1 之间的值) Math.cos(x) 返回角 x(以弧度计)的余弦(介于 -1 与 1 之间的值) Math.min() 和 Math.max() 可用于查找参数列表中的最低或最高值...exec() 方法用于检索字符串中的正则表达式的匹配。 该函数返回一个数组,其中存放匹配的结果。如果未找到匹配,则返回值为 null。

    2.1K10

    Pandas库常用方法、函数集合

    qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列“堆叠”为一个层次化的...:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum:计算分组的总和...describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax、cumprod:...、趋势和季节性 pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系 pandas.plotting.scatter_matrix...用于访问Datetime中的属性 day_name, month_name: 获取日期的星期几和月份的名称 total_seconds: 计算时间间隔的总秒数 rolling: 用于滚动窗口的操作 expanding

    31510

    嘀~正则表达式快速上手指南(下篇)

    我们从每个结果中快速的去掉 : 和 < 现在,让我们打印出代码的结果来看看。 ? 注意我们没有使用 sender 变量在 re.search()函数中作为搜索字符串。...就像之前做的一样,我们在步骤3B中首先检查s_name 的值是否为None 。 然后,在将字符串分配给变量前,我们调用两次了 re 模块中的re.sub() 函数。...我们获取的Date:字段的代码与From:及To:字段的代码相同。就像保证这两个字段的值不是None一样,我们同样要检查被赋值到变量date_field的值是否为 None。 ?...使用 pandas 处理数据 如果使用 pandas 库处理列表中的字典 那将非常简单。每个键会变成列名, 而键值变成行的内容。 我们需要做的就是使用如下代码: ?...emails_df['sender_email'] 选择了标记为 sender_email的列,接下来,如果在该列中匹配到 子字符串 "maktoob" 或 "spinfinder" ,则str.contains

    4K10

    MongoDB入门(四)

    Operators)计算总和、平均值、拼接分割字符串等相关操作,直到每个阶段进行完成,最终返回结果,返回的结果可以直接输出,也可以存储到集合中。...接受任意数量的参数表达式。 $sqrt 计算平方根。 $subtract 返回从第一个值减去第二个值的结果。 如果这两个值是数字,则返回差值。 如果这两个值是日期,则返回以毫秒为单位的差值。...如果这两个值是日期和毫秒数,则返回结果日期。 接受两个参数表达式。 如果这两个值是日期和数字,请首先指定日期参数,因为从数字中减去日期没有意义。 $trunc 将数字截断为其整数。...$indexOfBytes 在字符串中搜索子字符串的出现,并返回第一次出现的UTF-8字节索引。如果未找到子字符串,则返回“-1”。...$week 将日期的周数作为介于0(一年中第一个星期日之前的部分周)和53(闰年)之间的数字返回。 $hour 以0到23之间的数字返回日期的小时数。

    30720

    1000+倍!超强Python『向量化』数据处理提速攻略

    如果在数据上使用for循环,则完成所需的时间将与数据的大小成比例。但是还有另一种方法可以在很短的时间内得到相同的结果,那就是向量化。...看下面的例子: numpy.where()它从我们的条件中创建一个布尔数组,并在条件为真或假时返回两个参数,它对每个元素都这样做。这对于在Dataframe中创建新列非常有用。...代码如下: 如果添加了.values: 4 更复杂的 有时必须使用字符串,有条件地从字典中查找内容,比较日期,有时甚至需要比较其他行的值。我们来看看!...2、字典lookups 对于进行字典查找,我们可能会遇到这样的情况,如果为真,我们希望从字典中获取该series键的值并返回它,就像下面代码中的下划线一样。...这和最终结果是一样的,只是下面的那个代码更长。 4、使用来自其他行的值 在这个例子中,我们从Excel中重新创建了一个公式: 其中A列表示id,L列表示日期。

    6.8K41

    Python在Finance上的应用4 :处理股票数据进阶

    名为烛形图的OHLC图表是一种将开盘价,最高价,最低价和收盘价数据全部集中在一个很好的格式中的图表。 另外,它有漂亮的颜色和前面提到的美丽的图表?...如果你喜欢的话,这是更高级的Pandas功能,你可以从中了解更多。 我们想要绘制烛形数据以及成交量数据。我们不必重新采样数据,应该,因为它与10D定价数据相比太细致。...,现在想要将这些信息移动到matplotlib中,并将日期转换为mdates版本。...由于仅仅只要在Matplotlib中绘制列,所以实际上不希望日期成为索引,可以这样做: df_ohlc = df_ohlc.reset_index() 现在的日期只是一个普通的列。...在我们的例子中,我们选择0。 plt.show() ?

    1.9K20

    一文归纳Python特征生成方法(全)

    如以上述数据集,同一cust_no对应多条记录,通过对cust_no(客户编号)做分组聚合,统计C1字段个数、唯一数、平均值、中位数、标准差、总和、最大、最小值,最终得到按每个cust_no统计的C1平均值...# 以cust_no做聚合,C1字段统计个数、唯一数、平均值、中位数、标准差、总和、最大、最小值 df.groupby('cust_no').C1.agg(['count','nunique','mean...如具体的家庭住址,可以截取字符串到城市级的粒度。 字符长度 统计字符串长度。如转账场景中,转账留言的字数某些程度可以刻画这笔转账的类型。 频次 通过统计字符出现频次。...如欺诈场景中地址出现次数越多,越有可能是团伙欺诈。 # 字符特征 # 由于没有合适的例子,这边只是用代码实现逻辑,加工的字段并无含义。...常用的有计算日期间隔、周几、几点等等。

    98320

    Django官方文档小结(二) -- QuerySet

    范围内 xxx__year 日期字段的年份 xxx__month 日期字段的月份 xxx__day 日期字段的日 ---- exact 完全符合,如果提供用于比较的值None,则将其解释为SQL NULL...WHERE id = 14; SELECT ... WHERE id IS NULL; iexact 不区分大小写的完全匹配,如果提供用于比较的值None,则将其解释为SQL NULL。...year/month/day/week/week_day/quarter(取1到4之间的整数值,表示一年中的四分之一。) 对于日期和日期时间字段,确切的年份匹配。允许链接其他字段查找。...annotate() annotate(* args,** kwargs) 表达式可以是简单值,对模型(或任何相关模型)上的字段的引用,或者是通过与对象中的对象相关的对象计算的聚合表达式(平均值,总和等...order_by() order_by(*fields) 默认情况下,a返回的结果按模型中选项QuerySet给出的排序元组排序。您可以使用该方法在每个基础上覆盖它。

    1.8K20
    领券