首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如果某列中有重复项,是否选择某列中字符串最短的行?

在处理某列中有重复项的情况下,是否选择某列中字符串最短的行,取决于具体的需求和场景。以下是一些可能的策略和考虑因素:

  1. 数据完整性:如果数据的完整性对于你的应用至关重要,那么选择某列中字符串最短的行可能不是一个好的选择。较短的字符串可能是错误、缺失或不完整的数据,而较长的字符串可能包含更多的信息。
  2. 数据质量:如果你的数据质量较高,且较短的字符串代表了更准确的数据,那么选择某列中字符串最短的行可能是合理的。这可能适用于某些特定的应用场景,例如文本分类或关键字提取。
  3. 性能考虑:在处理大量数据时,比较字符串长度可能会导致性能问题。如果性能是一个关键因素,那么选择某列中字符串最短的行可能会增加额外的计算开销。在这种情况下,可以考虑使用其他数据结构或算法来优化处理过程。

总之,选择某列中字符串最短的行是否合适取决于具体的需求和场景。在实际应用中,需要综合考虑数据完整性、数据质量和性能等因素,以确定最佳的处理策略。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

参加2020Jam初赛记录与部分题目解答

Google Jam大赛是谷歌举办的一年一届的在线答算法题的的比赛。初赛比赛时长27小时,一共有5道算法题,总分100分,获得分数30分和以上者,就能晋级下一轮比赛。在这27小时内,选手可以多次进入jam的比赛链接,查看题目和提交代码,每道题可以提交多次。提交后,页面会实时反馈代码运行测试用例结果(通过/未通过),不过不会展示测试结果集。参加Jam的选手,进入前一千名有T恤发放;前三名奖励现金,一般参加人数达数万人,基本没有拿奖的可能了。我在赛事开始前看到了GDG公众号关于JAM的赛事信息推送,于是抱着闲着也是闲着,不如试试水的心态报名参加2020年的Jam。

01
  • 这是我见过最有用的Mysql面试题,面试了无数公司总结的(内附答案)

    1.什么是数据库? 数据库是组织形式的信息的集合,用于替换,更好地访问,存储和操纵。 也可以将其定义为表,架构,视图和其他数据库对象的集合。 2.什么是数据仓库? 数据仓库是指来自多个信息源的中央数据存储库。 这些数据经过整合,转换,可用于采矿和在线处理。 3.什么是数据库中的表? 表是一种数据库对象,用于以保留数据的列和行的形式将记录存储在并行中。 4.什么是数据库中的细分? 数据库表中的分区是分配用于在表中存储特定记录的空间。 5.什么是数据库中的记录? 记录(也称为数据行)是表中相关数据的有序集

    02

    《高性能 MySQL》读书笔记

    1、隔离级别有四种: READ UNCOMMITTED(未提交读),同事务中某个语句的修改,即使没有提交,对其他事务也是可见的。这个也叫脏读。 READ COMMITTED(提交读),另一个事务只能读到该事务已经提交的修改,是大多数据库默认的隔离级别。但是有下列问题,一个事务中两次读取同一个数据,由于这个数据可能被另一个事务提交了两次,所以会出现两次不同的结果,所以这个级别又叫做不可重复读。这里的不一样的数据包括虚读(两次结果不同)和幻读(出现新的或者缺少了某数据)。 REPEATABLE READ(可重复读),这个级别不允许脏读和不可重复读,比如MYSQL中通过MVCC来实现解决幻读问题。 SERIALIABLE(可串行化),这儿实现了读锁,级别最高。

    02

    TRIE(3)

    搜索引擎现在一般都有关键词提示或者说是补全功能。就是当你在搜索框里输入一个关键词s时,搜索引擎会自动提示你一些频率比较高,同时前缀是s的关键词  这道题的大意就是给定你N个高频的查询字符串。然后题目定义如果一个字符串s满足,有不少于5个高频字符串是以s为前缀的,那么我们就称s是“合适的前缀”。同时如果一个“合适的前缀”s,删掉s的最后一个字符之后就不是“合适的前缀”了,那我们就称s是“最短的合适前缀”。最后题目问你对于给定N个高频字符串,一共有几个“最短的合适前缀”  举个例子,假如高频的字符串是如下12个:a ab abc abcde abcde abcba bcd bcde bcbbd bcac bee bbb,那么“最短的合适前缀”一共有4个,是ab bb bc be。需要注意一点是,样例中故意给了两个一样的字符串abcde,提醒你需要处理输入中有重复字符串的情况  首先我们看一下为什么ab是“最短的合适前缀”。以ab为前缀的字符串有ab abc abcde abcde abcba 5个,这里abcde要算2次;而以a为前缀的字符串有6个,多了一个a。所以ab砍掉b之后就不是合适的前缀了,所以ab是一个“最短的合适前缀”  同理以b为前缀的高频字符串有6个,所以b不是合适的;但是bb,bc,be都是合适的,所以bb bc be也都是“最短的合适前缀”  通过对样例的分析,我们可以发现:如果我们用所有高频字符串构造Trie,那么找“最短的合适前缀”其实就是找一个节点p,满足以p为根的子树中的终结点不多于5个,同时以p的父节点为根的子树中的终结点大于5  而关于计算Trie的一个子树中终结点的数目,我们在上一节已经做过这样的题目了。方法是用一个cnt数组(int cnt[MAX_NODE])在插入字符串的时候把沿途的节点cnt都加一。等所有高频字符串都插入完成之后,遍历trie中的每一个节点,看有几个节点p满足cnt[p]<=5且cnt[p.father]>5  其中遍历trie可以用之前讲的dfs算法,整个算法的伪代码如下:

    02

    记忆化搜索专题

    大家好,又见面了,我是你们的朋友全栈君。   什么是记忆化搜索呢?搜索的低效在于没有能够很好地处理重叠子问题;动态规划虽然比较好地处理了重叠子问题,但是在有些拓扑关系比较复杂的题目面前,又显得无奈。记忆化搜索正是在这样的情况下产生的,它采用搜索的形式和动态规划中递推的思想将这两种方法有机地综合在一起,扬长避短,简单实用,在信息学中有着重要的作用。   用一个公式简单地说:记忆化搜索=搜索的形式+动态规划的思想。   动态规划:就是一个最优化问题,先将问题分解为子问题,并且对于这些分解的子问题自身就是最优的才能在这个基础上得出我们要解决的问题的最优方案,要不然的话就能找到一个更优的解来替代这个解,得出新的最优自问题,这当然是和前提是矛盾的。动态规划不同于 贪心算法,因为贪心算法是从局部最优来解决问题,而动态规划是全局最优的。用动态规划的时候不可能在子问题还没有得到最优解的情况下就做出决策,而是必须等待子问题得到了最优解之后才对当下的情况做出决策,所以往往动态规划都可以用 一个或多个递归式来描述。而贪心算法却是先做出一个决策,然后在去解决子问题。这就是贪心和动态规划的不同。 一般遇到一个动态规划类型的问题,都先要确定最优子结构,还有重叠子问题,这两个是动态规划最大的特征,然后就是要写 动态规划的状态方程,这个步骤十分十分的重要的,写动归方程是需要一定的经验的,这可以通过训练来达到目的。接着就是要自底向上的求解问题的,先将最小规模的子问题的最优解求出,一般都用一张表来记录下求得的解,到后来遇到同样的子问题的时候就可以直接查表得到答案,最后就是通过一步一步的迭代得出最后问题的答案了。 我的理解最重要的东西就是一定会要一个数组或者其他的存储结构存储得到的子问题的解。这样就可以省很多时间,也就是典型的空间换时间 动态规划的一种变形就是记忆化搜索,就是根据动归方程写出递归式,然后在函数的开头直接返回以前计算过的结果,当然这样做也需要一个存储结构记下前面计算过的结果,所以又称为记忆化搜索。 记忆化搜索递归式动态规划 1.记忆化搜索的思想 记忆化搜索的思想是,在搜索过程中,会有很多重复计算,如果我们能记录一些状态的答案,就可以减少重复搜索量 2、记忆化搜索的适用范围 根据记忆化搜索的思想,它是解决重复计算,而不是重复生成,也就是说,这些搜索必须是在搜索扩展路径的过程中分步计算的题目,也就是“搜索答案与路径相关”的题目,而不能是搜索一个路径之后才能进行计算的题目,必须要分步计算,并且搜索过程中,一个搜索结果必须可以建立在同类型问题的结果上,也就是类似于动态规划解决的那种。 也就是说,他的问题表达,不是单纯生成一个走步方案,而是生成一个走步方案的代价等,而且每走一步,在搜索树/图中生成一个新状态,都可以精确计算出到此为止的费用,也就是,可以分步计算,这样才可以套用已经得到的答案 3、记忆化搜索的核心实现 a. 首先,要通过一个表记录已经存储下的搜索结果,一般用哈希表实现 b.状态表示,由于是要用哈希表实现,所以状态最好可以用数字表示,常用的方法是把一个状态连写成一个p进制数字,然后把这个数字对应的十进制数字作为状态 c.在每一状态搜索的开始,高效的使用哈希表搜索这个状态是否出现过,如果已经做过,直接调用答案,回溯 d.如果没有,则按正常方法搜索 4、记忆化搜索是类似于动态规划的,不同的是,它是倒做的“递归式动态规划”。

    02
    领券