首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如果连接不依赖于规划变量,我可以告诉Optaplanner (带约束流)不要重新计算连接吗?

Optaplanner是一个用于解决排班、路径规划、资源分配等问题的优化引擎。在Optaplanner中,连接是指解决方案中两个实体之间的关联关系。

如果连接不依赖于规划变量,可以通过配置来告诉Optaplanner不要重新计算连接。具体而言,可以使用@PlanningEntity注解中的chained属性来指定连接是否需要重新计算。

chained属性设置为true时,Optaplanner会在每次计算过程中重新计算连接。这意味着如果连接不依赖于规划变量,可以将chained属性设置为false,告诉Optaplanner不要重新计算连接,从而提高计算效率。

以下是一个示例代码片段,展示了如何使用@PlanningEntity注解中的chained属性来控制连接的计算:

代码语言:txt
复制
@PlanningEntity(chained = false)
public class MyPlanningEntity {
    // 实体属性和规划变量的定义
    // ...
}

需要注意的是,具体是否可以设置chained属性为false取决于具体问题的约束和规划变量的定义。在某些情况下,连接的计算可能是必需的,以确保解决方案的完整性和正确性。

关于Optaplanner的更多信息和使用方法,您可以参考腾讯云的Optaplanner产品介绍页面:Optaplanner产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【译】OptaPlanner开发手册本地化: (0) - 前言及概念

在此之前,针对APS写了一些理论性的文章;而对于OptaPlanner也写了一些介绍性质,几少量入门级的帮助初学者走近OptaPlanner。在此以后,老农将会按照OptaPlanner官方的用户手册的结构,按章节地对其进行翻译,并成型一系列的操作说明文章。在文章中,为了降低对原文的理解难度,有些地方我不会直接按原文档的字面翻译,而是有可能加入一些我自己的理解,或添一些解释性的内容。毕竟英语环境下的思维和语言表达方式,跟中文或多或少会有差别的,所以如果全部按字面翻译,内容就非常生硬,可读性差,解程难度较大。我认为应该在理解了作者原意的基础上,再进一步以中文方式的表达,才算是真的的本地化。记得老农还是少农时,学习开发技术,需要阅读一些外国书箱的翻译本时,印象最深的是候捷老师的书,尽管《深入浅出MFC》,砖头厚度的书,硬是被我翻散了线,MFC尽管真的晦涩难懂,但候老却能把Windows的消息机制及MFC中整个个宏体系,系统地通俗地描述出来,令读者不需要花费太多精力去理解猜测书中字面的意义,大大降低的VC++中MFC的学习门槛。但老农毕竟只是一个一线开发人员,不是专业的技术资料翻译人才,不可能有候老师的专业水平,因此,我也只可尽我所能把内容尽量描述得通俗一些,让读者尽量容易理解,花费更少的时间掌握这些知道要点。

00

《算法图解》note 9 动态规划1.动态规划定义2.与分治法及贪婪算法的区别3.动态规划的后续学习

这是《算法图解》的第九篇读书笔记,主要内容是动态规划的简介。 1.动态规划定义 动态规划指的是在约束条件下,将问题划分为若干子问题并对其求出最优解,同时将子问题的答案存储起来,以减少重复计算相同子问题的次数,最终求出问题最优解的算法思想。 2.与分治法及贪婪算法的区别 贪婪算法是自上而下地逐步求解局部最优解,不依赖于子问题。 分治法实施的前提是子问题相互独立,相互独立的子问题避免分治法重复计算相同的子问题。 而分治法则能解决子问题不独立、局部最优解的求解依赖于子问题的问题。 3.动态规划的后续学习 由于

05
  • OOP编程七大原则

    OCP(Open-Closed Principle),开放封闭原则:软件实体应该扩展开放、修改封闭。 实现:合理划分构件,一种可变性不应当散落在代码的很多角落里,而应当被封装到一个对象里;一种可变性不应当与另一个可变性混合在一起。 DIP(Dependency Inversion Principle),依赖倒置原则:摆脱面向过程编程思想中高层模块依赖于低层实现,抽象依赖于具体细节。OOP中要做到的是,高层模块不依赖于低层模块实现,二者都依赖于抽象;抽象不依赖于具体实现细节,细节依赖于抽象。 实现:应该通过抽象耦合的方式,使具体类最大可能的仅与其抽象类(接口)发生耦合;程序在需要引用一个对象时,应当尽可能的使用抽象类型作为变量的静态类型,这就是针对接口编程的含义。 LSP(Liskov Substitution Principle),Liskov替换原则:继承思想的基础, 即子类能替代父类使用。“只有当衍生类可以替换掉基类,软件单位的功能不会受到影响时,基类才真正被复用,而衍生类也才能够在基类的基础上增加新的行为。” ISP(Interface Insolation Principle),接口隔离原则:客户端不应该依赖它不需要的接口,一个类对另一个类的依赖应该建立在最小的接口上,不要引入无关因素,避免接口污染。 实现:一个类对另外一个类的依赖性应当是建立在最小的接口上的。使用多个专门的接口比使用单一的总接口要好。 SRP(Single Resposibility Principle),单一职责原则:就一个类而言,接口职责单一,应该仅有一个引起它变化的原因。 如果一个类的职责过多,就等于把这些职责耦合在一起,一个职责的变化可能会抑止这个类完成其他职责的能力。 CARP(Composite/Aggregate Reuse Principle),合成/聚合复用原则:设计模式告诉我们对象委托优于类继承,从UML的角度讲,就是关联关系优于继承关系。尽量使用合成/聚合、尽量不使用继承。 实现:在一个新的对象里面使用一些已有的对象,使之成为新对象的一部分,以整合其功能。 LoD(Law Of Demeter or Principle of Least Knowledge),迪米特原则或最少知识原则:就是说一个对象应当对其他对象尽可能少的了解,依赖越少越好。即只直接与朋友通信,或者通过朋友与陌生人通信。 朋友的定义(或关系): (1)当前对象本身。 (2)以参量的形式传入到当前对象方法中的对象。 (3)当前对象的实例变量直接引用的对象。 (4)当前对象的实例变量如果是一个聚集,那么聚集中的元素也都是朋友。 (5)当前对象所创建的对象。 实现: (1)在类的划分上,应当创建有弱耦合的类。类之间的耦合越弱,就越有利于复用。 (2)在类的结构设计上,每一个类都应当尽量降低成员的访问权限。一个类不应当public自己的属性,而应当提供取值和赋值的方法让外界间接访问自己的属性。 (3)在类的设计上,只要有可能,一个类应当设计成不变类。 (4)在对其它对象的引用上,一个类对其它对象的引用应该降到最低。 (5)尽量限制局部变量的有效范围.

    03

    OptaPlanner规划引擎的工作原理及简单示例(1)

    在之前的文章中,已介绍过APS及规划的相关内容,并对Optaplanner相关的概念和一些使用示例进行过介绍,接下来的文章中,我会自己做一个规划小程序 - 一个关于把任务分配到不同的机台上进行作业的小程序,并在这个小程序的基础上对OptaPlanner中更多的概念,功能,及使用方法进行讲解。但在此之前,我需要先讲解一下OptaPlanner在进行规则运算的原理。所以,本文是讲述一些关于寻找最优解的过程中的原理性的内容,作为后续通过示例深入讲解的基础。但这些原理知识不会涉及过分深奥的数学算法,毕竟我们的目标不是写一个新的规划引擎出来,更不是要研究各种寻优算法;只是理解一些概念,用于理解OptaPlanner是依据什么找出一个相对优解的。以便在接下来的一系列文章中,可以快速无障碍地理解我所讲解的更细化的OptaPlanner功能。

    00

    OptaPlanner规划引擎的工作原理及简单示例(2)

    在前面一篇关于规划引擎OptaPlanner的文章里(OptaPlanner规划引擎的工作原理及简单示例(1)),老农介绍了应用OptaPlanner过程中需要掌握的一些基本概念,这些概念有助于后面的内容的理解,特别是关于将约束应用于业务规则上的理解。承上一文,在本篇中将会减少一些理论,而是偏向于实践,但过程中,借助实际的场景对一些相关的理论作一些更细致的说明,也是必要的。本文将会假设我们需要对一个车间,需要制定生产计划.我们为生产计划员们设计一套智能的、自动的计划系统;并通过OptaPlanner把这个自动计划系统开发出来。当然,里面的业务都是经过高度抽象形成的,去除了复杂的业务规则,仅保留可以体现规划引擎作用的一些业务需求。因此,这次我们只用一个简单的小程序即可以演绎一个自动计划系统,来呈现规划引擎OptaPlanner在自动计划上的魅力。

    01
    领券